FLOOD INSURANCE STUDY

FEDERAL EMERGENCY MANAGEMENT AGENCY

VOLUME 2 OF 11

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

COMMUNITY NAME	COMMUNITY NUMBER
HILLSBOROUGH COUNTY, UNINCORPORATED AREAS	120112
PLANT CITY, CITY OF	120113
TAMPA, CITY OF	120114
TEMPLE TERRACE, CITY OF	120115

REVISED PRELIMINARY 09/24/2020

REVISED:

TBD

FLOOD INSURANCE STUDY NUMBER 12057CV002C

Version Number 2.4.3.5

TABLE OF CONTENTS

Volume 1

	<u>Page</u>
 SECTION 1.0 – INTRODUCTION 1.1 The National Flood Insurance Program 1.2 Purpose of this Flood Insurance Study Report 1.3 Jurisdictions Included in the Flood Insurance Study Project 1.4 Considerations for using this Flood Insurance Study Report 	1 1 2 2 8
SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS 2.1 Floodplain Boundaries 2.2 Floodways 2.3 Base Flood Elevations 2.4 Non-Encroachment Zones 2.5 Coastal Flood Hazard Areas 2.5.1 Water Elevations and the Effects of Waves 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 2.5.3 Coastal High Hazard Areas 2.5.4 Limit of Moderate Wave Action	20 43 44 44 44 45 46 47
SECTION 3.0 – INSURANCE APPLICATIONS 3.1 National Flood Insurance Program Insurance Zones	49 49
SECTION 4.0 – AREA STUDIED 4.1 Basin Description 4.2 Principal Flood Problems 4.3 Non-Levee Flood Protection Measures 4.4 Levees SECTION 5.0 – ENGINEERING METHODS 5.1 Hydrologic Analyses	50 50 51 51 52 53
<u>Figures</u>	<u>Page</u>
Figure 1: FIRM Panel Index Figure 2: FIRM Notes to Users Figure 3: Map Legend for FIRM Figure 4: Floodway Schematic Figure 5: Wave Runup Transect Schematic Figure 6: Coastal Transect Schematic Figure 7: Frequency Discharge-Drainage Area Curves	11 13 16 43 46 48 66

<u>Tables</u>

	<u>Page</u>
Table 1: Listing of NFIP Jurisdictions Table 2: Flooding Sources Included in this FIS Report Table 3: Flood Zone Designations by Community Table 4: Basin Characteristics Table 5: Principal Flood Problems Table 6: Historic Flooding Elevations Table 7: Non-Levee Flood Protection Measures Table 8: Levees Table 9: Summary of Discharges Table 10: Summary of Non-Coastal Stillwater Elevations Table 11: Stream Gage Information used to Determine Discharges	2 22 49 50 51 51 52 52 54 66
Volume 2	
	<u>Page</u>
SECTION 5.0 – ENGINEERING METHODS (continued) 5.2 Hydraulic Analyses 5.3 Coastal Analyses 5.3.1 Total Stillwater Elevations 5.3.2 Waves 5.3.3 Coastal Erosion 5.3.4 Wave Hazard Analyses 5.4 Alluvial Fan Analyses SECTION 6.0 – MAPPING METHODS 6.1 Vertical and Horizontal Control 6.2 Base Map 6.3 Floodplain and Floodway Delineation	67 89 91 93 94 109 109 110
<u>Figures</u>	<u>Page</u>
Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas Figure 9: Transect Location Map	92 107
<u>Tables</u>	<u>Page</u>
Table 12: Summary of Hydrologic and Hydraulic Analyses Table 13: Roughness Coefficients Table 14: Summary of Coastal Analyses	68 88 89

Table 15: Tide Gage Analysis Specifics Table 16: Coastal Transect Parameters Table 17: Summary of Alluvial Fan Analyses Table 18: Results of Alluvial Fan Analyses Table 19: Countywide Vertical Datum Conversion Table 20: Stream-Based Vertical Datum Conversion Table 21: Base Map Sources Table 22: Summary of Topographic Elevation Data used in Mapping Table 23: Floodway Data	93 96 109 109 110 110 111
Volume 3	
<u>Tables</u>	<u>Page</u>
Table 23: Floodway Data (continued)	140
Volume 4	
	<u>Page</u>
SECTION 6.0 – MAPPING METHODS (continued) 6.4 Coastal Flood Hazard Mapping 6.5 FIRM Revisions 6.5.1 Letters of Map Amendment 6.5.2 Letters of Map Revision Based on Fill 6.5.3 Letters of Map Revision 6.5.4 Physical Map Revisions 6.5.5 Contracted Restudies 6.5.6 Community Map History	288 295 295 296 296 297 297 298
<u>Tables</u>	<u>Page</u>
Table 23: Floodway Data (continued) Table 24: Flood Hazard and Non-Encroachment Data for Selected Streams Table 25: Summary of Coastal Transect Mapping Considerations Table 26: Incorporated Letters of Map Change Table 27: Community Map History	219 288 289 297 299

		<u>Page</u>
SECTION 7.0 – CONTRACTED S 7.1 Contracted Studies 7.2 Community Meetings	STUDIES AND COMMUNITY COORDINATION	300 300 311
SECTION 8.0 – ADDITIONAL INF	FORMATION	313
SECTION 9.0 – BIBLIOGRAPHY	AND REFERENCES	314
	<u>Tables</u>	Dogo
Table 28: Summary of Contracted Table 29: Community Meetings Table 30: Map Repositories Table 31: Additional Information Table 32: Bibliography and Reference	Studies Included in this FIS Report	300 312 313 314 315
Flood Profiles	<u>Exhibits</u> Panel	
Flood Floilles	<u>ranei</u>	
Alafia River Watershed		
Alafia River	01-02 P	
Buckhorn Creek	03 P	
North Prong Alafia River	04-05 P	
Rice Creek	06 P	
South Prong Alafia River	07-09 P	
Tributary Canal	10 P	
Brooker Creek Watershed		
Brooker Creek	11-12 P	
Bullfrog/Wolf Branch Creek Water	shed	
Big Bend	13 P	
Bullfrog Creek	14-17 P	
Bullfrog Creek Tributary 1	18 P	
Bullfrog Creek Tributary 2	19 P	
Bullfrog Creek Tributary 3	20-21 P	
Little Bullfrog Creek	22-24 P	
North Prong Bullfrog Creek	25 P	
Tadpole Creek	26 P	

Tucker Rhodine	27 P
Curiosity Creek Watershed Curiosity Creek (near City of Tampa)	28-30 P
Cypress Creek Watershed Cypress Creek (near City of Tampa) Mill Lake Tributary	31-33 P 34 P
Archie Creek Archie Creek Delaney Creek Delaney Creek Lateral C Delaney Creek Lateral D Delaney Creek Lateral E Delaney Creek Tributary 1 Delaney Creek Tributary 2 North Archie Creek	35-36 P 37-40 P 41 P 42 P 43 P 44 P 45 P 46-48 P
Eastlake Watershed Six Mile Creek	49-50 P
Hillsborough River Watershed Bassett Branch Blackwater Creek Clay Gulley East Clay Gulley East Tributary 2 Clay Gulley East Tributary 4 Clay Gulley East Tributary 5 Clay Gulley East Tributary 6 Clay Gulley East Tributary 7	51 P 52-54 P 55-57 P 58 P 59 P 60 P 61 P 62 P

Flood Profiles	<u>Panel</u>
Hillsborough River Watershed (co	ntinued)
Clay Gulley East Tributary 8	63 P
Clay Gulley West	64-66 P
Cow House Creek	67-69 P
East Canal	70-71 P
East Canal Tributary	72 P
East Canal (Upstream of Fron	ntage Road) 73-74 P
Hillsborough River	75-82 P

Hollomans Branch	83-86 P
Hollomans Branch Tributary 1	87 P
Hollomans Branch Tributary 2	88-89 P
Hollomans Branch Tributary 3	90-91 P
Itchepackesassa Creek	92-93 P
Itchepackesassa Creek Tributary 1	94 P
Itchepackesassa Creek Tributary 2	95 P
New River	96-97 P
New River East	98 P
Tiger Creek	99-100 P
Trout Creek	101-103 P
Two Hole Branch	104-107 P
Two Hole Branch Tributary 1	108-110 P
Little Manatee River Watershed	
Alderman Creek	111-112 P
Carlton Branch	113-115 P
Carlton Branch Tributary 1	116 P
Carlton Branch Tributary 2	117-118 P
Carlton Branch Tributary 3	119 P
Carlton Branch Tributary 3.1	120 P
Curiosity Creek	121 P
Curiosity Creek Tributary 1	122 P
Curiosity Creek Tributary 1.1	123 P
Cypress Creek	124-126 P
Dug Creek	127-128 P
Dug Creek Tributary 1	129 P
Dug Creek Tributary 2	130 P
Dug Creek Tributary 3	131 P
Gulley Branch	132-134 P
Howard Prairie Branch	135-137 P
Howard Prairie Branch Tributary 1	138 P
Howard Prairie Branch Tributary 2	139 P
NOT PRINTED	140 P
Little Manatee River	141-147 P

Flood Profiles	<u> </u>	<u>Panel</u>
Little Manatee River Watershed	(continued)	
Little Manatee River Tributa	ary 1	148 P
Little Manatee River Tributa	ary 2	149 P
Little Manatee River Tributa	ary 2.1	150 P
Little Manatee River Tributa	ary 2.2	151 P
Little Manatee River Tributa	ary 3	152 P
Little Manatee River Tributa	ary 4	153 P
Little Manatee River Tributa	ary 5	154-155 P
Little Manatee River Tributa	ary 5.1	156 P
Little Manatee River Tributa	ary 6	157 P
Little Manatee River Tributa	ary 7	158-159 P
Little Manatee River Tributa	ary 7.1	160 P
Little Manatee River Tributa	ary 8	161 P
Little Manatee River Tributa	ary 9	162 P
Little Manatee River Tributa	ary 10	163-164 P
Little Manatee River Tributa	ary 11	165 P
Little Manatee River Tributa	ary 12	166 P
Little Manatee River Tributa	ary 13	167-168 P
North Lake Tributary		169 P
Pierce Branch		170-172 P
Pierce Branch Tributary 1		173 P
Pierce Branch Tributary 2		174 P
Pierce Branch Tributary 3		175 P
NOT PRINTED		176 P
Ruskin Inlet/Marsh Branch		177-178 P
South Fork Little Manatee I	River	179 P
Wildcat Creek		180-181 P
Lower Sweetwater Creek Water		
Lower Sweetwater Creek T	ributary 1	182-183 P
Pemberton Creek/Baker Canal \	Watershed	
Baker Canal		184-187 P
Baker Canal Tributary 1		188 P
Baker Canal Tributary 2		189 P
Baker Canal Tributary 3		190 P
Baker Canal Tributary 5		191 P
Baker Canal Tributary 6		192 P
Baker Canal Tributary 7		193 P
Baker Canal Tributary 8		194 P

Baker Creek/Pemberton Creek/Mill Creek	195-199 P
Baker Creek Tributary 1	200 P
Baker Creek Tributary 2	201 P
Campbell Branch	202-207 P
Campbell Branch Tributary 1	208 P
Flint Creek	209 P
Lake Thonotosassa Tributary	210 P
Mill Creek Tributary 1	211 P
Mill Creek Tributary 2	212 P
Pemberton Creek Tributary 1	213 P
Spartman Branch	214-216 P
Rocky/Brushy Creek Watershed	
Brushy Creek	217-219 P
Brushy Creek Branch 2	220-221 P
Brushy Creek Tributary 1	222 P
Half Moon Lake Branch	223-224 P
NOT PRINTED	225 P
Rocky Creek	226-229 P
Rocky Creek Tributary 1	230-233 P

Flood Profiles	<u>Panel</u>
Sweetwater Creek Watershed	
Sweetwater Creek	234-236 P
Sweetwater Creek Channel H	237-238 P
Tampa Bypass Canal Watershed	
NOT PRINTED	239 P
Tampa Bypass Canal	240-242 P
Tampa Bypass Canal Main Ditch	243 P
Tampa Bypass Canal Tributary 1	243 P
Tampa Bypass Canal Tributary 1 So Branch	outh 246 P
Tampa Bypass Canal Tributary 2	247 P

Transect 1		01-02 T
Transect 2		03-04 T
Transect 3		05-06 T
Transect 4		07-08 T
Transect 5		09-11 T
Transect 6		12-14 T
Transect 7		15-16 T
Transect 8		17-18 T
Transect 9		19-20 T
Transect 10		21-22 T
Transect 11		23-25 T
Transect 12		26-27 T
Transect 13		28-29 T
Transect 14		30-31 T
Transect 15		32-33 T
Transect 16		34-36 T
Transect 17		37-39 T
Transect 18		40-41 T
Transect 19		42-43 T
Transect 20		44-46 T
Transect 21		47-48 T
Transect 22		49-50 T
Transect 23		51-52 T
Transect 24		53-54 T
Transect 25		55-57 T
Transect 26		58-59 T
Transect 27		60-61 T
Transect 28		62-63 T
Transect 29		64-65 T
Transect 30		66-67 T
	Volume 9 Exhibits	
Transect Profiles	EXHIBITS	Panel
Transcott Tomos		<u>r arior</u>
Transect 31		68-69 T
Transect 32		70-72 T
Transect 33		73-75 T
Transect 34		76-78 T
Transect 35		79-81 T
Transect 36		82-83 T
Transect 37		84-85 T

<u>Panel</u>

Transect Profiles

Transect 38	86-87 T
Transect 39	88-89 T
Transect 40	90-91 T
Transect 41	92-93 T
Transect 42	94-95 T
Transect 43	96-97 T
Transect 44	98-99 T
Transect 45	100-101 T
Transect 46	102-103 T
Transect 47	104-105 T
Transect 48	106-107 T
Transect 49	108-109 T
Transect 50	110-111 T
Transect 51	112-113 T
Transect 52	114-115 T
Transect 53	116-117 T
Transect 54	118-119 T
Transect 55	120-121 T
Transect 56	122-123 T
Transect 57	124-125 T
Transect 58	126-127 T
Transect 59	128-129 T
Transect 60	130-131 T
Transect 61	132 T
Transect 62	133-134 T
Transect 63	135 T
Transect 64	136-137 T
Transect 65	138-139 T
Transect 66	140 T
Transect 67	141 T
Transect 68	142-143 T
Transect 69	144-145 T
Transect 70	146-147 T
Transect 71	148-149 T
Transect 72	150-151 T

Transect Profiles	EXHIBITS	Panal
Transect Profiles		<u>Panel</u>
Transect 73		152-153 T
Transect 74		154-156 T
Transect 75		157-159 T
Transect 76		160-161 T
Transect 77		162-163 T
Transect 78		164-166 T
Transect 79		167-168 T
Transect 80		169-171 T
Transect 81		172-174 T
Transect 82		175-177 T
Transect 83		178-180 T
Transect 84		181-183 T
Transect 85		184-185 T
Transect 86		186-188 T
Transect 87		189-191 T
Transect 88		192-194 T
Transect 89		195-197 T
Transect 90		198-199 T
Transect 91		200-202 T
Transect 92		203-205 T
Transect 93		206-208 T
Transect 94		209-211 T
Transect 95		212-214 T
Transect 96		215-216 T
Transect 97		217-218 T
Transect 98		219-221 T
Transect 99		222-223 T
Transect 100		224-225 T
Transect 101		226-227 T
Transect 102		228-229 T
Transect 103		230-231 T
Transect 104		232-233 T
Transect 105		234 T

Exhibits

Transect Profiles	<u>Panel</u>	
Transect 106	235-237 T	-
Transect 107	238-239 T	-
Transect 108	240-241 T	-
Transect 109	242-244 T	-
Transect 110	245-247 T	-
Transect 111	248-250 T	-
Transect 112	251-253 T	-
Transect 113	254-256 T	-
Transect 114	257-259 T	-
Transect 115	260-262 T	-
Transect 116	263-265 T	-
Transect 117	266-267 T	-
Transect 118	268-269 T	-

Published Separately

Flood Insurance Rate Map (FIRM)

5.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Base flood elevations on the FIRM represent the elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations. These whole-foot elevations may not exactly reflect the elevations derived from the hydraulic analyses. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM. The hydraulic analyses for this FIS were based on unobstructed flow. The flood elevations shown on the profiles are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail.

For streams for which hydraulic analyses were based on cross sections, locations of selected cross sections are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 6.3), selected cross sections are also listed in Table 23, "Floodway Data."

A summary of the methods used in hydraulic analyses performed for this project is provided in Table 12. Roughness coefficients are provided in Table 13. Roughness coefficients are values representing the frictional resistance water experiences when passing overland or through a channel. They are used in the calculations to determine water surface elevations. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation.

Table 12: Summary of Hydrologic and Hydraulic Analyses

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Alafia River	Approximately 1 mile downstream of U.S. Highway 41	Approximately 2.1 miles upstream of confluence of Buckhorn Creek	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine cross section that intersected the coastal surge.
Alafia River	Approximately 2.1 miles upstream of confluence of Buckhorn Creek	Confluence of North Prong Alafia River/ South Prong Alafia River	SCS Runoff Curve Number Method and HEC-1	HEC-2	03/2003	AE w/ Floodway	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed in August 2002 by Parsons Engineering Science, Inc. (FEMA 2013).
Alderman Creek	Confluence with Manatee River	Approximately 2.4 miles upstream of Taylor Gill Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Archie Creek	Approximately 200 feet downstream of 78th Street South	Approximately 0.4 miles upstream of 78th Street South	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Archie Creek	Approximately 0.4 miles upstream of 78th Street South	Approximately 1,820 feet upstream of Interstate 75	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	07/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in April 2002 by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal	Confluence with Lake Thonotosassa Tributary and Baker Creek	Approximately 1,800 feet upstream of Walden Sheffield Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal Tributary 1	Taylor Road	Confluence with Baker Canal	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Baker Canal Tributary 2	Confluence with Baker Canal	Approximately 0.5 miles upstream of Gallagher Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal Tributary 3	Confluence with Baker Canal	Approximately 1,050 feet upstream of U.S. Highway 92	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal Tributary 5	Confluence with Baker Canal	Approximately 25 feet upstream of McIntosh Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal Tributary 6	Confluence with Baker Canal	Approximately 0.8 miles upstream of confluence with Baker Canal	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal Tributary 7	Confluence with Baker Canal	Approximately 0.6 miles upstream of Dover Road North	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Canal Tributary 8	Confluence with Baker Canal	Approximately 0.7 miles upstream of Walden Sheffield Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Creek/ Pemberton Creek/ Mill Creek	Confluence with Lake Thonotosassa and Baker Canal	Approximately 130 feet upstream of North Wheeler Street	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department. (FEMA 2013).
Baker Creek Tributary 1	Confluence with Pemberton Creek	Approximately 0.8 miles upstream of Emerald Acres Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).
Baker Creek Tributary 2	Confluence with Baker Creek Tributary 1	Approximately 0.7 miles upstream of confluence with Baker Creek Tributary 1	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Basset Branch	Confluence with Hillsborough River	At Pasco County boundary	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Bell Creek	Confluence with Alafia River	Approximately 1.4 miles upstream of Rhodine Road	SCS Runoff Curve Number Method and HEC-1	HEC-2	08/2002	AE	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed by Parsons Engineering Science, Inc. (FEMA 2013).
Big Bend	Confluence with Bullfrog Creek	Approximately 0.7 miles upstream of Simmons Loop	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Blackwater Creek	Confluence with Hillsborough River	Approximately 0.9 miles upstream of Canaan Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Brooker Creek	At Pinellas County boundary	Approximately 0.7 miles upstream of Farmer Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in July 2002 by Advantage Engineering Inc. (FEMA 2013).
Brushy Creek	Confluence with Rocky Creek	Approximately 860 feet upstream of Round Oak Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Brushy Creek Branch 2	Confluence with Brushy Creek	Approximately 25 feet upstream of Hutchison Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Brushy Creek Tributary 1	Confluence with Brushy Creek	Approximately 40 feet upstream of Country Lake Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Buckhorn Creek	Confluence with Alafia River	Kings Avenue South	SCS Runoff Curve Number Method and	HEC-2	08/2002	AE	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM.
			HEC-1				The hydrologic and hydraulic analyses were completed by Parsons Engineering Science, Inc. (FEMA 2013).
Bullfrog Creek	Confluence with Hillsborough Bay	Approximately 40 feet upstream of Symmes Road	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Bullfrog Creek	Approximately 40 feet upstream of Symmes Road	Approximately 0.6 miles upstream of Edina Street	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Bullfrog Creek Tributary 1	Confluence with Bullfrog Creek	Approximately 25 feet upstream of Lincoln Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	09/2001	AE	The hydrologic and hydraulic analyses were completed by Dames & Moore Corporation (FEMA 2013).
Bullfrog Creek Tributary 2	Confluence with Bullfrog Creek	Approximately 0.4 miles upstream of West Lake Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Bullfrog Creek Tributary 3	Confluence with Bullfrog Creek	Approximately 53 feet upstream of County Road 672	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Cabbagehead Bayou	Approximately 100 feet upstream of Hillsborough Avenue	Confluence with Rocky Creek	*	*	08/2017	AE w/ Floodway	Cabbagehead Bayou is completely inundated by coastal flooding effects, and therefore does not have an applicable riverine Flood Profile.
Campbell Branch	Confluence with Flint Creek	Approximately 960 feet upstream of Thonotosassa Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Campbell Branch Tributary 1	Confluence with Campbell Branch	Approximately 0.5 miles upstream of McIntosh Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department (FEMA 2013).
Carlton Branch	Confluence with Little Manatee River	Approximately 1,600 feet upstream of Huckleberry Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Carlton Branch Tributary 1	Confluence with Carlton Branch	Approximately 24 feet upstream of Leonard Lee Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Carlton Branch Tributary 2	Confluence with Carlton Branch	Approximately 0.5 miles upstream of Balm Wimauma Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Carlton Branch Tributary 3	Confluence with Carlton Branch	Just upstream of Sweat Loop Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Carlton Branch Tributary 3.1	Confluence with Carlton Branch Tributary 3	Approximately 40 feet upstream of Balm Wimauma Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by PBS&J (FEMA 2013).
Clay Gulley East	Confluence with Hillsborough River	Approximately 1.8 miles upstream of Five Acre Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Clay Gulley East Tributary 2	Confluence with Clay Gulley East	Five Acre Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Clay Gulley East Tributary 4	Confluence with Clay Gulley East Tributary 6	Approximately 75 feet upstream of Five Acre Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Clay Gulley East Tributary 5	Confluence with Clay Gulley Tributary 7	Approximately 80 feet upstream of Burnt Barn Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Clay Gulley East Tributary 6	Confluence with Clay Gulley East	Approximately 1 mile upstream of confluence of Clay Gulley East Tributary 4	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Clay Gulley East Tributary 7	Confluence with Clay Gulley East	Approximately 480 feet upstream of Warren Byrd Lane	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Clay Gulley East Tributary 8	Confluence with Clay Gulley East	Approximately 0.7 miles upstream of confluence with Clay Gulley East	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).
Clay Gulley West	Confluence with Hillsborough River	At Pasco County boundary	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Cow House Creek	Confluence with Hillsborough River	Confluence of Hillsborough River	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Curiosity Creek	Confluence with Little Manatee River	Approximately 0.5 miles upstream of confluence of Curiosity Creek Tributary 1	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Curiosity Creek	Approximately 0.5 miles upstream of confluence of Curiosity Creek Tributary 1	Approximately 1.1 miles upstream of Lightfoot Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Curiosity Creek (near City of Tampa)	Approximately 1,450 feet downstream of 122nd Avenue	Approximately 1,000 feet upstream of Bearss Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in October 2001 by Kisinger Campo and Associates, Inc. (FEMA 2013).
Curiosity Creek Tributary 1	Confluence with Curiosity Creek	Approximately 0.7 miles upstream of confluence with Curiosity Creek	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Curiosity Creek Tributary 1	Approximately 0.7 miles upstream of confluence with Curiosity Creek	Just upstream of Pinetree Circle	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Curiosity Creek Tributary 1.1	Confluence with Curiosity Creek Tributary 1	Approximately 0.7 miles upstream of Butch Cassidy Trail	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Cypress Creek	Confluence with Little Manatee River	Just upstream of 19th Avenue NE	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Cypress Creek (near City of Tampa)	Confluence with Hillsborough River	County Line Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by URS Southern Corporation (FEMA 2013).
Delaney Creek	Approximately 1.2 miles downstream of 50th Street	78th Street South	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Delaney Creek	78th Street South	Approximately 1,000 feet upstream of I-75	HC-SWMM and SCS method	HC-SWMM EXTRAN	2011	AE w/ Floodway	
Delaney Creek	Approximately 1,000 feet upstream of I-75	Approximately 1,700 feet upstream of Lakewood Drive South	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	07/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in April 2002 by Hillsborough County Engineering Department (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Delaney Creek Lateral C	Confluence with Delaney Creek	Approximately 15 feet upstream of Rideout Road	HC-SWMM and SCS method	HC-SWMM EXTRAN	2011	AE w/ Floodway	
Delaney Creek Lateral D	Confluence with Delaney Creek	Approximately 710 feet upstream of Ridein Road	HC-SWMM and SCS method	HC-SWMM EXTRAN	2011	AE	
Delaney Creek Lateral E	Confluence with Delaney Creek	Approximately 770 feet upstream of Palm River Road	HC-SWMM and SCS method	HC-SWMM EXTRAN	2011	AE w/ Floodway	
Delaney Creek Tributary 1	Confluence with Delaney Creek	Approximately 30 feet upstream of Maydell Drive	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Delaney Creek Tributary 2	Confluence with Delaney Creek	Approximately 0.2 miles upstream of confluence with Delaney Creek	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Delaney Creek Tributary 2	Approximately 0.2 miles upstream of confluence with Delaney Creek	Approximately 920 feet upstream of Robindale Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	07/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in April 2002 by Hillsborough County Engineering Department (FEMA 2013).
Dug Creek	Confluence with Little Manatee River	Approximately 800 feet upstream of State Road 674	AdICPR	AdICPR	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Dug Creek Tributary 1	Confluence with Dug Creek	Approximately 2,100 feet upstream of Ed Lane	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by PBS&J (FEMA 2013).
Dug Creek Tributary 2	Confluence with Dug Creek	Approximately 1,150 feet upstream of West Lake Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Dug Creek Tributary 3	Confluence with Dug Creek	Approximately 20 feet upstream of West Lake Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by PBS&J (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
East Canal	Confluence with Itchepackesassa Creek	Approximately 1,200 feet upstream of East Terrace Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
East Canal (upstream of Frontage Road)	Frontage Road	Approximately 1,275 feet upstream of Alabama Street	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).
East Canal Tributary	Confluence at East Canal	Approximately 740 feet upstream of Crystal Terrace	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).
Fishhawk Creek	Confluence with Alafia River	Boyette Road	SCS Runoff Curve Number Method and HEC-1	HEC-2	08/2002	AE	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed by Parsons Engineering Science, Inc. (FEMA 2013).
Flint Creek	U.S. Highway 301	Confluence of Campbell Branch	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Gulley Branch	Confluence with Little Manatee River	Approximately 2.5 miles upstream of confluence with Little Manatee River	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Halfmoon Lake Branch	Confluence with Rocky Creek	Approximately 1 mile upstream of DJ Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Hillsborough River	Tampa Dam	At Pasco County boundary	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

	Study Limits	Study Limits	Hydrologic Model or	Hydraulic Model or	Date Analyses	Flood Zone on	
Flooding Source	Downstream Limit	Upstream Limit	Method Used	Method Used	Completed	FIRM	Special Considerations
Hollomans Branch	Confluence with Hillsborough River	Approximately 0.7 miles upstream of West Knights Griffin Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Hollomans Branch Tributary 1	Confluence with Hollomans Branch	Approximately 25 feet upstream of Dormany Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Hollomans Branch Tributary 2	Confluence with Hollomans Branch	Approximately 0.4 miles upstream of Frazier Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Hollomans Branch Tributary 3	Confluence with Hollomans Branch	Approximately 1.25 miles upstream of Knights Griffin Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Howard Prairie Branch	Confluence with Little Manatee River	Just upstream of South County Road 39	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Howard Prairie Branch Tributary 1	Confluence with Howard Prairie Branch	Approximately 3.2 miles upstream of Grange Hall Loop	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Howard Prairie Branch Tributary 2	Confluence with Howard Prairie Branch	Just upstream of South County Road 39	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Itchepackesassa Creek	Confluence with Blackwater Creek	Approximately 1.3 miles upstream of Knights Griffin Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Itchepackesassa Creek Tributary 1	Confluence with Itchepackesassa Creek	Approximately 1.3 miles upstream of Knights Griffin Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Itchepackesassa Creek Tributary 2	Confluence with Itchepackesassa Creek	Approximately 0.4 miles upstream of confluence with Itchepackesassa Creek	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Lake Thonotosassa Tributary	Thonotosassa Road	Confluence with Baker Creek and Baker Canal	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Little Bullfrog Creek	Confluence with Bullfrog Creek	Approximately 0.6 miles upstream of Big Bend Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Little Manatee River	Confluence with Ruskin Inlet/ Marsh Branch	Approximately 0.8 miles upstream of confluence of Little Manatee River Tributary 2	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Little Manatee River	Approximately 0.8 miles upstream of confluence of Little Manatee River Tributary 2	Approximately 2.2 miles upstream of Taylor Gill Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 1	Confluence with Little Manatee River	30th Street SE	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Little Manatee River Tributary 2	Confluence with Little Manatee River	Approximately 0.6 miles upstream of confluence of Little Manatee River Tributary 2.2	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Little Manatee River Tributary 2	Approximately 0.6 miles upstream of confluence of Little Manatee River Tributary 2.2	Approximately 60 feet upstream of U.S. Highway 301	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Little Manatee River Tributary 2.1	Confluence with Little Manatee River Tributary 2	Approximately 0.4 miles upstream of confluence with Little Manatee River Tributary 2	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Little Manatee River Tributary 2.1	Approximately 0.4 miles upstream of confluence with Little Manatee River Tributary 2	Approximately 1,020 feet upstream of Lightfoot Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 2.2	Confluence with Little Manatee River Tributary 2	Approximately 410 feet upstream of confluence with Little Manatee River Tributary 2	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Little Manatee River Tributary 2.2	Approximately 410 feet upstream of confluence with Little Manatee River Tributary 2	Approximately 550 feet upstream of Butch Cassidy Trail	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 3	Confluence with Little Manatee River	Approximately 0.5 miles upstream of confluence with Little Manatee River	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 4	Confluence with Little Manatee River	Approximately 1.3 miles upstream of confluence with Little Manatee River	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 5	Confluence with Little Manatee River	Approximately 1.4 miles upstream of confluence of Little Manatee River Tributary 5.1	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Little Manatee River Tributary 5.1	Confluence with Little Manatee River Tributary 5	Approximately 0.9 miles upstream of confluence with Little Manatee River Tributary 5	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 6	Confluence with Little Manatee River	Approximately 1,525 feet upstream of Leonard Lee Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 7	Confluence with Little Manatee River	Approximately 1.1 miles upstream of confluence of Little Manatee River Tributary 7.1	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 7.1	Confluence with Little Manatee River Tributary 7	Approximately 1.0 mile upstream of confluence with Little Manatee River Tributary 7	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 8	Confluence with Little Manatee River	Approximately 0.5 miles upstream of Grange Hall Loop	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 9	Confluence with Little Manatee River	Approximately 1.6 miles upstream of Grange Hall Loop	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 10	Confluence with Little Manatee River	Approximately 1.1 miles upstream of State Highway 674	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 11	Confluence with Little Manatee River	Approximately 1.6 miles upstream of confluence with Little Manatee River	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Little Manatee River Tributary 12	Confluence with Little Manatee River	Approximately 50 feet upstream of State Highway 674	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Little Manatee River Tributary 13	Confluence with Little Manatee River	Approximately 1,618 feet upstream of State Highway 674	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by PBS&J (FEMA 2013).
Lower Sweetwater Creek Tributary 1	Confluence with Sweetwater Creek	Approximately 1,050 feet upstream of Veterans Expressway	*	Combined probability calculation spreadsheet	08/2017	AE	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Lower Sweetwater Creek Tributary 1	Approximately 1,050 feet upstream of Veterans Expressway	Approximately 1 mile upstream of West Paris Street	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department (FEMA 2013).
Mill Creek Tributary 1	Confluence with Mill Creek	Approximately 50 feet upstream of Bennet Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Mill Creek Tributary 2	Confluence with Mill Creek	Approximately 0.6 miles upstream of I-4	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Mill Lake Tributary	Approximately 0.4 miles downstream of Livingston Avenue	Approximately 58 feet downstream of Livingston Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed in December 2002 by URS Southern Corporation (FEMA 2013).
New River	Confluence with Hillsborough River	Approximately 0.6 miles upstream of Morris Bridge Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
New River East	Confluence with New River	At Pasco County boundary	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
North Archie Creek	Approximately 0.5 miles downstream of 78th Street South	Approximately 0.5 miles upstream of 82nd Street South	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
North Archie Creek	Approximately 0.5 miles upstream of 82nd Street South	Approximately 20 feet upstream of Valhalla Pond Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	07/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in April 2002 by Hillsborough County Engineering Department (FEMA 2013).
North Lake Tributary	North Pebble Beach Boulevard	Approximately 1,750 feet upstream of Cherry Hill Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by PBS&J (FEMA 2013).
North Prong Alafia River	Confluence with Alafia River and South Prong Alafia River	At Polk County boundary	SCS Runoff Curve Number Method and HEC-1	HEC-2	03/2003	AE w/ Floodway	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed in August 2002 by Parsons Engineering Science, Inc. (FEMA 2013).
North Prong Bullfrog Creek	Confluence with Bullfrog Creek	Approximately 1.4 miles upstream of confluence with Bullfrog Creek	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Pemberton Creek Tributary 1	Confluence with Pemberton Creek	Approximately 1,280 feet upstream of Glen Harwell Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department (FEMA 2013).
Pierce Branch	Confluence with Little Manatee River	Approximately 2.1 miles upstream of confluence of Pierce Branch Tributary 3	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Pierce Branch Tributary 1	Confluence with Pierce Branch	Approximately 0.8 miles upstream of confluence with Pierce Branch	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Pierce Branch Tributary 2	Confluence with Pierce Branch	Approximately 1.9 miles upstream of confluence with Pierce Branch	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Pierce Branch Tributary 3	Confluence with Pierce Branch	Approximately 25 feet upstream of Sweat Loop Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2002	AE	The hydrologic and hydraulic analyses were completed by PBS&J (FEMA 2013).
Rice Creek	Confluence with Alafia River	Approximately 1 mile upstream of Oak Forest Drive	SCS Runoff Curve Number Method and HEC-1	HEC-2	03/2003	AE w/ Floodway	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed in August 2002 by Parsons
							Engineering Science, Inc. (FEMA 2013).
Rocky Creek	Approximately 100 feet downstream of Sheldon Road	Approximately 0.5 miles upstream of Linebaugh Avenue	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Rocky Creek	Approximately 0.5 miles upstream of Linebaugh Avenue	Approximately 300 feet upstream of Hammock Woods Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	06/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Rocky Creek Tributary 1	Confluence with Turkey Ford Lake	Approximately 0.8 miles upstream of Fishermans Bend Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	12/2001	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department (FEMA 2013).
Ruskin Inlet/ Marsh Branch	Confluence with Little Manatee River	Approximately 0.5 miles upstream of College Avenue	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Ruskin Inlet/ Marsh Branch	Approximately 0.5 miles upstream of College Avenue	Approximately 0.8 miles upstream of 14th Avenue SE	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Six Mile Creek	Confluence at Tampa Bypass Canal	Approximately 1,590 feet upstream of Danny Bryan Boulevard	*	Combined probability calculation spreadsheet	08/2017	AE	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Six Mile Creek	Approximately 1,590 feet upstream of Danny Bryan Boulevard	Approximately 480 feet upstream of Orient Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2002	AE	The hydrologic and hydraulic analyses were completed by Hillsborough County Engineering Department (FEMA 2013).
South Fork Little Manatee River	Confluence with Little Manatee River	At Manatee County boundary	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
South Prong Alafia River	Confluence with Alafia River and North Prong Alafia River	Approximately 2.7 miles upstream of Jameson Road	SCS Runoff Curve Number Method and HEC-1	HEC-2	03/2003	AE w/ Floodway	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed in August 2002 by Parsons Engineering Science, Inc. (FEMA 2013).
Spartman Branch	Confluence with Pemberton Creek	Mud Lake Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2004	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in December 2001 by Hillsborough County Engineering Department (FEMA 2013).
Sweetwater Creek	Confluence with Rocky Creek	Approximately 1,270 feet upstream of Veterans Expressway	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Sweetwater Creek	Approximately 1,270 feet upstream of Veterans Expressway	Orange Grove Drive	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2002 by Ayers Associates, Inc. (FEMA 2013).
Sweetwater Creek Channel H	Confluence with Sweetwater Creek	Approximately 0.7 miles upstream of Thatcher Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2002 by Ayers Associates, Inc. (FEMA 2013).
Tadpole Creek	Confluence with Bullfrog Creek	Approximately 65 feet upstream of U.S. Highway 301	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Tampa Bypass Canal	Approximately 0.7 miles downstream of Broadway Avenue East	Confluence of Cow House Creek	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Tampa Bypass Canal Main Ditch	Confluence with Tampa Bypass Canal	Approximately 0.7 miles upstream of Eureka Springs Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).
Tampa Bypass Canal Tributary 1	Confluence with Tampa Bypass Canal	Approximately 1,552 feet upstream of Raga Boulevard	*	Combined probability calculation spreadsheet	08/2017	AE	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Tampa Bypass Canal Tributary 1	Confluence with Tampa Bypass Canal	Approximately 0.5 miles upstream of Williams Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).
Tampa Bypass Canal Tributary 1 South Branch	Confluence with Tampa Bypass Canal Tributary 1	Approximately 300 feet upstream of confluence with Tampa Bypass Canal Tributary 1	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Tampa Bypass Canal Tributary 2	Confluence with Tampa Bypass Canal	Approximately 120 feet upstream of U.S. Highway 301	*	Combined probability calculation spreadsheet	08/2017	AE	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Tampa Bypass Canal Tributary 2	Confluence with Tampa Bypass Canal	Approximately 1,150 feet upstream of U.S. Highway 30	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	03/2002	AE	The hydrologic and hydraulic analyses were completed by Ayers Associates, Inc. (FEMA 2013).
Tiger Creek	Confluence with Blackwater Creek	Approximately 30 feet upstream of Half Mile Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Tributary Canal	Confluence with Buckhorn Creek	Approximately 0.7 miles upstream of confluence with Buckhorn Creek	SCS Runoff Curve Number Method and HEC-1	HEC-2	08/2002	AE	Revised 1-percent annual chance floodplain boundaries were compared to the 1992 boundaries, and the more conservative result in each area was depicted on the 2008 countywide FIRM. The hydrologic and hydraulic analyses were completed by Parsons Engineering Science, Inc. (FEMA 2013).
Trout Creek	Confluence with Hillsborough River	At Pasco County boundary	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Tucker Rhodine	Confluence with Bullfrog Creek	Approximately 0.6 miles upstream of confluence with Bullfrog Creek	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	11/2002	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in September 2001 by Dames & Moore Corporation (FEMA 2013).
Two Hole Branch	Confluence with Hillsborough River	Approximately 1.5 miles upstream of Bruton Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).
Two Hole Branch Tributary 1	Confluence with Two Hole Branch	Approximately 2.2 miles upstream of Bob Smith Avenue	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	01/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in March 2002 by Ayers Associates, Inc. (FEMA 2013).

Table 12: Summary of Hydrologic and Hydraulic Analyses (continued)

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Wildcat Creek	Confluence with Little Manatee River	Stephens Road	*	Combined probability calculation spreadsheet	08/2017	AE w/ Floodway	Combined probability analysis was calculated for each riverine node that intersected the coastal surge.
Wildcat Creek	Stephens Road	Approximately 0.7 miles upstream of Stephens Road	SCS Runoff Curve Number Method and HEC-1	SWMM 4.31 and EXTRAN	02/2003	AE w/ Floodway	The hydrologic and hydraulic analyses were completed in June 2002 by PBS&J (FEMA 2013).
Zone A Flooding Sources	Within Hillsborough County	Within Hillsborough County	*	*	06/2004	Α	
Zone AE Ponding Areas	Within Hillsborough County	Within Hillsborough County	*	*	06/2004	AE	

^{*}Data not available

Table 13: Roughness Coefficients

Baker Canal 0.025-0.11 0.03-0.20 Bassett Branch 0.035-0.085 0.035-0.10 Blackwater Creek 0.02-0.10 0.04-0.09 Brooker Creek 0.04-0.05 0.07-0.08 Brushy Creek System 0.025-0.11 0.035-0.125 Bullfrog Creek 0.025-0.08 0.16 Campbell Branch/Antioch/Flint Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek (near City of Tampa) 0.035-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater	Flooding Source	Channel "n"	Overbank "n"
Blackwater Creek 0.02-0.10 0.04-0.09 Brooker Creek 0.04-0.05 0.07-0.08 Brushy Creek System 0.025-0.11 0.035-0.125 Bullfrog Creek 0.025-0.08 0.16 Campbell Branch/Antioch/Flint Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Ittchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.025-0.08 Pemberton Creek System 0.04-0.01	Baker Canal	0.025-0.11	0.03-0.20
Brooker Creek 0.04-0.05 0.07-0.08 Brushy Creek System 0.025-0.11 0.035-0.125 Bullfrog Creek 0.025-0.08 0.16 Campbell Branch/Antioch/Flint Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.04 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.	Bassett Branch	0.035-0.085	0.035-0.10
Brushy Creek 0.025-0.11 0.035-0.125 Bullfrog Creek 0.025-0.08 0.16 Campbell Branch/Antioch/Flint Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.01	Blackwater Creek	0.02-0.10	0.04-0.09
Bullfrog Creek 0.025-0.08 0.16 Campbell Branch/Antioch/Flint Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-	Brooker Creek	0.04-0.05	0.07-0.08
Campbell Branch/Antioch/Flint Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.035-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River<	Brushy Creek System	0.025-0.11	0.035-0.125
Creek System 0.025-0.11 0.03-0.20 Clay Gulley East 0.035-0.06 0.035-0.08 Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 <td>Bullfrog Creek</td> <td>0.025-0.08</td> <td>0.16</td>	Bullfrog Creek	0.025-0.08	0.16
Clay Gulley West 0.045-0.10 0.075-0.08 Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.12 Tampa Bypass 0.03-0.10 0.03-0.081		0.025-0.11	0.03-0.20
Curiosity Creek 0.05-0.08 0.07-0.14 Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.03-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Clay Gulley East	0.035-0.06	0.035-0.08
Curiosity Creek (near City of Tampa) 0.035-0.045 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.045 0.03-0.081	Clay Gulley West	0.045-0.10	0.075-0.08
Tampa) 0.035-0.043 0.04-0.08 Cypress Creek 0.09-0.16 0.17-0.25 Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.045 0.03-0.081	Curiosity Creek	0.05-0.08	0.07-0.14
Delaney Creek 0.025-0.10 0.025-0.24 East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081		0.035-0.045	0.04-0.08
East Canal 0.02-0.04 0.045-0.45 Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Cypress Creek	0.09-0.16	0.17-0.25
Hillsborough River 0.025-0.06 0.025-0.25 Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Delaney Creek	0.025-0.10	0.025-0.24
Hollomans Branch 0.03-0.12 0.03-0.12 Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	East Canal	0.02-0.04	0.045-0.45
Itchepackesassa Creek 0.02-0.05 0.035-0.08 Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Hillsborough River	0.025-0.06	0.025-0.25
Little Manatee River 0.011-0.15 0.025-0.80 Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Hollomans Branch	0.03-0.12	0.03-0.12
Lower Sweetwater 0.015-0.04 0.025-0.05 Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Itchepackesassa Creek	0.02-0.05	0.035-0.08
Marsh Branch 0.04-0.09 0.07-0.10 New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Little Manatee River	0.011-0.15	0.025-0.80
New River 0.045-0.08 0.04-0.075 North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Lower Sweetwater	0.015-0.04	0.025-0.05
North Archie Creek 0.03-0.08 0.025-0.08 Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Marsh Branch	0.04-0.09	0.07-0.10
Pemberton Creek System 0.04-0.11 0.02-0.20 Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	New River	0.045-0.08	0.04-0.075
Rocky Creek System 0.035-0.09 0.05-0.125 South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	North Archie Creek	0.03-0.08	0.025-0.08
South Fork Little Manatee River 0.013-0.04 0.03-0.14 Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Pemberton Creek System	0.04-0.11	0.02-0.20
Sweetwater Creek 0.015-0.095 0.03-0.12 Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	Rocky Creek System	0.035-0.09	0.05-0.125
Tampa Bypass 0.03-0.10 0.032-0.10 Tiger Creek 0.02-0.045 0.03-0.081	South Fork Little Manatee River	0.013-0.04	0.03-0.14
Tiger Creek 0.02-0.045 0.03-0.081	Sweetwater Creek	0.015-0.095	0.03-0.12
	Tampa Bypass	0.03-0.10	0.032-0.10
Trout Creek 0.045-0.065 0.045-0.10	Tiger Creek	0.02-0.045	0.03-0.081
	Trout Creek	0.045-0.065	0.045-0.10

Table 13: Roughness Coefficients (continued)

Flooding Source	Channel "n"	Overbank "n"	
Two Hole Branch	0.035-0.09	0.04-0.09	
Wildcat Creek	0.03-0.09	0.0-0.17	

5.3 Coastal Analyses

For the areas of Hillsborough County that are impacted by coastal flooding processes, coastal flood hazard analyses were performed to provide estimates of coastal BFEs. Coastal BFEs reflect the increase in water levels during a flood event due to extreme tides and storm surge as well as overland wave effects.

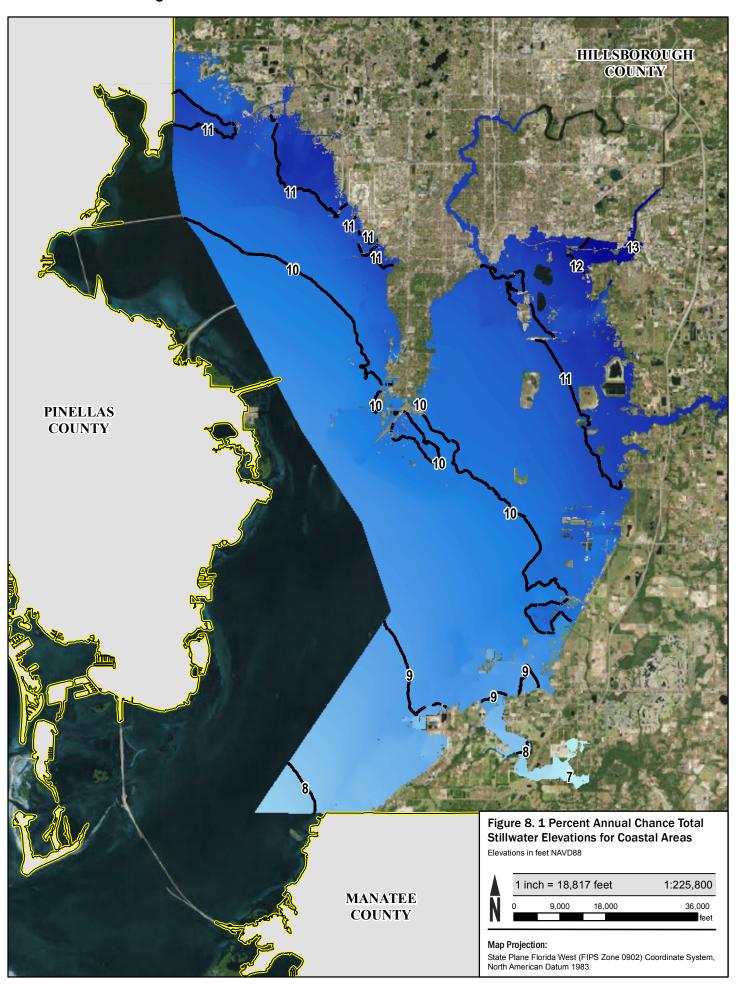
The following subsections provide summaries of how each coastal process was considered for this FIS Report. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation. Table 14 summarizes the methods and/or models used for the coastal analyses. Refer to Section 2.5.1 for descriptions of the terms used in this section.

Table 14: Summary of Coastal Analyses

	Study Limits				
Flooding Source	From	То	Hazard Evaluated	Model or Method Used	Date Analysis was Completed
Gulf of Mexico	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Overland Wave Propagation	WHAFIS	2017
Gulf of Mexico	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Statistical Analysis	JPM	2017
Gulf of Mexico	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Storm Surge	ADCIRC	2017
Gulf of Mexico	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Generation	SWAN	2017
Gulf of Mexico	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Runup	CHAMP/ Runup 2.0/ TAW	2017
Gulf of Mexico	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Setup	SWAN	2017

Table 14: Summary of Coastal Analyses (continued)

	Study	Limits			
Flooding Source	From	То	Hazard Evaluated	Model or Method Used	Date Analysis was Completed
Hillsborough Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Overland Wave Propagation	WHAFIS	2017
Hillsborough Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Statistical Analysis	JPM	2017
Hillsborough Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Storm Surge	ADCIRC	2017
Hillsborough Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Generation	SWAN	2017
Hillsborough Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Runup	CHAMP/ Runup 2.0/ TAW	2017
Hillsborough Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Setup	SWAN	2017
Old Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Overland Wave Propagation	WHAFIS	2017
Old Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Statistical Analysis	JPM	2017
Old Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Storm Surge	ADCIRC	2017
Old Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Generation	SWAN	2017


Table 14: Summary of Coastal Analyses (continued)

	Study	Limits			
Flooding Source	From	То	Hazard Evaluated	Model or Method Used	Date Analysis was Completed
Old Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Runup	CHAMP/ Runup 2.0/ TAW	2017
Old Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Setup	SWAN	2017
Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Overland Wave Propagation	WHAFIS	2017
Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Statistical Analysis	JPM	2017
Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Storm Surge	ADCIRC	2017
Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Generation	SWAN	2017
Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Runup	CHAMP/ Runup 2.0/ TAW	2017
Tampa Bay	Entire coastline of Hillsborough County	Entire coastline of Hillsborough County	Wave Setup	SWAN	2017

5.3.1 Total Stillwater Elevations

The total stillwater elevations (stillwater including storm surge plus wave setup) for the 1% annual chance flood were determined for areas subject to coastal flooding. The models and methods that were used to determine storm surge and wave setup are listed in Table 14. The stillwater elevation that was used for each transect in coastal analyses is shown in Table 16, "Coastal Transect Parameters." Figure 8 shows the total stillwater elevations for the 1% annual chance flood that was determined for this coastal analysis.

Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas

Astronomical Tide

Astronomical tidal statistics were generated directly from local tidal constituents by sampling the predicted tide at random times throughout the tidal epoch.

Storm Surge Statistics

Storm surge is modeled based on characteristics of actual storms responsible for significant coastal flooding. The characteristics of these storms are typically determined by statistical study of the regional historical record of storms or by statistical study of tidal gages.

When historic records are used to calculate storm surge, characteristics such as the strength, size, track, etc., of storms are identified by site. Storm data was used in conjunction with numerical hydrodynamic models to determine the corresponding storm surge levels. An extreme value analysis was performed on the storm surge modeling results to determine a stillwater elevation for the 1% annual chance event.

Table 15: Tide Gage Analysis Specifics [Not Applicable to this Flood Risk Project]

Combined Riverine and Tidal Effects

A combined rate of occurrence analysis was conducted to compute a 1-percent-annual-chance BFE for areas subject to flooding by both coastal and riverine flooding mechanisms. Since riverine and coastal analyses were based on independent events, the resulting combined BFE would be higher than that of their individual occurrence. In other words, at the location where the computed 1-percent-annual-chance coastal flood level equals the computed 1-percent-annual-chance riverine flood level, there was a greater than 1-percent-annual-chance of this flood level being equaled or exceeded.

In Hillsborough County, combined probability calculations were performed for Alafia River, Archie Creek, Bullfrog Creek, Curiosity Creek, Curiosity Creek Tributary 1, Delaney Creek, Delaney Creek Tributary 1, Delaney Creek Tributary 2, Little Manatee River, Little Manatee River Tributary 1, Little Manatee River Tributary 2, Little Manatee River Tributary 2.1, Little Manatee River Tributary 2.2, Lower Sweetwater Creek Tributary 1, North Archie Creek, Rocky Creek, Ruskin Inlet/Marsh Branch, Six Mile Creek, Sweetwater Creek, Tampa Bypass Canal Tributary 1, Tampa Bypass Canal Tributary 2, and Wildcat Creek.

Wave Setup Analysis

Wave setup was computed during the storm surge modeling through the methods and models listed in Table 14 and included in the frequency analysis for the determination of the total stillwater elevations.

5.3.2 Waves

The SWAN coastal wave model was used to calculate the nearshore wave field required for the addition of wave setup effects. The SWAN model is tightly coupled to the ADCIRC hydrodynamic model so that forces are passed between models as they run (Dietrich, et al., 2011). This results in the wave setup from breaking waves being part of the computed water elevations.

5.3.3 Coastal Erosion

A single storm episode can cause extensive erosion in coastal areas. Storm-induced erosion was evaluated to determine the modification to existing topography that is expected to be associated with flooding events. Erosion was evaluated using the methods listed in Table 14. The post-event eroded profile was used for the subsequent transect-based onshore wave hazard analyses.

5.3.4 Wave Hazard Analyses

Overland wave hazards were evaluated to determine the combined effects of ground elevation, vegetation, and physical features on overland wave propagation and wave runup. These analyses were performed at representative transects along all shorelines for which waves were expected to be present during the floods of the selected recurrence intervals. The results of these analyses were used to determine elevations for the 1% annual chance flood.

Transect locations were chosen with consideration given to the physical land characteristics as well as development type and density so that they would closely represent conditions in their locality. Additional consideration was given to changes in the total stillwater elevation. Transects were spaced close together in areas of complex topography and dense development or where total stillwater elevations varied. In areas having more uniform characteristics, transects were spaced at larger intervals. Transects shown in Figure 9, "Transect Location Map," are also depicted on the FIRM. Table 16 provides the location, stillwater elevations, and starting wave conditions for each transect evaluated for overland wave hazards. In this table, "starting" indicates the parameter value at the beginning of the transect.

Wave Height Analysis

Wave height analyses were performed to determine wave heights and corresponding wave crest elevations for the areas inundated by coastal flooding and subject to overland wave propagation hazards. Refer to Figure 6 for a schematic of a coastal transect evaluated for overland wave propagation hazards.

Wave heights and wave crest elevations were modeled using the methods and models listed in Table 14, "Summary of Coastal Analyses". For the 0.2-percent-annual-chance event, wave profiles were created to indicate the results of the wave height analysis at each transect (FEMA 2007). Such wave profiles may show greater detail than the mapping product, due to limitations of the map scales and smoothing tolerances applied during boundary cleanup. Wave runup analysis for the 0.2-percent-annual-chance event was not performed for this study and is not included in the profiles.

Wave Runup Analysis

Wave runup analyses were performed to determine the height and extent of runup beyond the limit of stillwater inundation for the 1% annual chance flood. Wave runup is defined as the maximum vertical extent of wave uprush on a beach or structure. FEMA's 2007 Guidelines and Specifications require the 2-percent wave runup level be computed for the coastal feature being evaluated (cliff, coastal bluff, dune, or structure) (FEMA, February 2007). The 2-percent runup level is the highest 2 percent of wave runup affecting the shoreline during the 1-percent-annual- chance flood event. Each transect defined within the study area was evaluated for the applicability of wave runup,

and if necessary, the appropriate runup methodology was selected and applied to each transect. Runup elevations were then compared to WHAFIS results to determine the dominant process affecting BFEs and associated flood hazard levels. Based on wave runup rates, wave overtopping was computed following the FEMA 2007 Guidelines and Specifications. Wave runup elevations were modeled using the methods and models listed in Table 14.

Table 16: Coastal Transect Parameters

		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations (Ilwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Old Tampa Bay	1	5.4	3.9	7.0 6.6 - 7.0	8.6 8.0 - 8.6	9.9 9.5 - 9.9	11.1 10.6 - 11.1	13.7 13.7 - 13.7
Old Tampa Bay	2	5.0	3.9	6.8 6.8 - 7.0	8.4 8.4 - 8.6	9.6 9.6 - 9.9	10.8 10.8 - 11.1	13.4 13.4 - 13.5
Old Tampa Bay	3	5.0	4.2	6.7 6.7 - 7.0	8.3 8.3 - 8.7	9.6 9.6 - 10.0	10.7 10.7 - 11.2	13.3 13.3 - 14.0
Old Tampa Bay	4	5.0	4.5	6.7 6.7 - 7.0	8.3 8.3 - 8.7	9.5 9.5 - 10.0	10.7 10.7 - 11.2	13.2 13.2 - 14.0
Old Tampa Bay	5	4.9	4.5	6.7 6.7 - 6.9	8.3 8.3 - 8.6	9.5 9.5 - 9.9	10.7 10.7 - 11.4	13.2 13.2 - 13.6
Old Tampa Bay	6	8.7	5.4	6.5 6.5 - 6.7	8.0 8.0 - 8.3	9.2 9.2 - 9.5	10.4 10.4 - 10.7	12.9 12.9 - 13.3
Old Tampa Bay	7	8.7	5.5	6.5 6.5 - 6.9	8.0 8.0 - 8.7	9.3 9.3 - 9.9	10.4 10.4 - 11.4	12.9 12.9 - 13.7
Old Tampa Bay	8	8.5	5.5	6.5 6.5 - 7.0	8.1 8.1 - 8.7	9.3 9.3 - 10.0	10.5 10.5 - 11.4	13.1 13.1 - 15.1
Old Tampa Bay	9	8.4	5.7	6.5 6.5 - 7.0	8.1 8.1 - 8.7	9.3 9.3 - 10	10.5 10.5 - 11.5	13.1 13.1 - 15.1
Old Tampa Bay	10	8.0	5.7	6.5 6.5 - 6.9	8.1 8.1 - 8.6	9.3 9.3 - 10.1	10.5 10.5 - 11.7	13.0 13.0 - 15.2
Old Tampa Bay	11	6.0	5.2	6.6 6.6 - 6.9	8.2 8.2 - 8.8	9.5 9.5 - 10.2	10.7 10.7 - 11.7	13.4 13.4 - 14.7

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance		Starting Stillwater Elevations (ft NAVD88) Range of Stillwater Elevations (ft NAVD88)					
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance		
Old Tampa Bay	12	5.7	5.4	6.6 6.6 - 6.7	8.3 8.3 - 8.1	9.6 9.6 - 9.5	10.8 10.8 - 10.9	13.5 13.5 - 14.5		
Old Tampa Bay	13	7.2	5.0	6.6 6.6 - 6.6	8.2 8.2 - 8.2	9.5 9.5 - 9.7	10.8 10.8 - 11.1	13.5 13.5 - 14.6		
Old Tampa Bay	14	7.1	4.9	6.5 6.5 - 6.6	8.1 8.1 - 8.2	9.4 9.4 - 9.6	10.6 10.6 - 11	13.3 13.3 - 14.8		
Old Tampa Bay	15	6.4	4.4	6.5 6.5 - 6.3	8.1 8.1 - 8.2	9.4 9.4 - 9.6	10.7 10.7 - 11.3	13.4 13.4 - 14.9		
Old Tampa Bay	16	5.9	5.1	6.4 6.4 - 6.3	8 8.0 - 8.1	9.3 9.3 - 9.5	10.6 10.6 - 11.3	13.3 13.3 - 15.0		
Old Tampa Bay	17	5.8	5.0	6.3 6.3 - 6.4	7.9 7.9 - 8.1	9.3 9.3 - 9.6	10.5 10.5 - 10.9	13.2 13.2 - 14.4		
Old Tampa Bay	18	6.4	5.1	6.3 6.2 - 6.3	7.9 7.9 - 8.1	9.2 9.2 - 9.5	10.4 10.4 - 10.8	13.2 13.2 - 14.0		
Old Tampa Bay	19	6.3	5.1	6.3 6.2 - 6.3	7.9 7.9 - 7.8	9.2 9.2 - 9.3	10.4 10.4 - 10.7	13.2 13.2 - 13.9		
Old Tampa Bay	20	7.6	5.2	6.3 6.2 - 6.3	7.9 7.9 - 7.8	9.2 9.2 - 9.2	10.4 10.4 - 10.6	13.1 13.1 - 14.1		
Old Tampa Bay	21	7.0	5.1	6.2 6.2 - 6.2	7.7 7.7 - 7.8	9.0 9.0 - 9.2	10.2 10.2 - 10.6	13.0 13.0 - 14.2		
Old Tampa Bay	22	5.7	5.5	6.1 6.1 - 6.1	7.7 7.7 - 7.7	9.0 9.0 - 9.1	10.2 10.2 - 10.7	12.9 12.9 - 14.0		

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance	Starting Stillwater Elevations (ft NAVD88) Range of Stillwater Elevations (ft NAVD88)					
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance	
Old Tampa Bay	23	7.5	5.5	6.1 6.1 - 6.1	7.7 7.7 - 7.7	8.9 8.9 - 9	10.1 10.1 - 10.6	12.8 12.8 - 14.2	
Old Tampa Bay	24	7.1	5.5	6.1 6.1 - 6.1	7.6 7.6 - 7.7	8.9 8.9 - 9.1	10.0 10.0 - 10.5	12.7 12.7 - 14.4	
Old Tampa Bay	25	8.9	5.4	5.9 5.9 - 6.0	7.4 7.4 - 7.7	8.6 8.6 - 8.9	9.7 9.7 - 10.1	12.4 12.4 - 13.3	
Old Tampa Bay	26	7.7	5.3	6.0 6.0 - 6.0	7.5 7.5 - 7.6	8.8 8.8 - 8.9	9.9 9.9 - 10.1	12.6 12.6 - 13.3	
Old Tampa Bay	27	8.2	5.3	6.0 5.9 - 6.0	7.5 7.5 - 7.5	8.7 8.7 - 8.8	9.9 9.9 - 9.9	12.6 12.6 - 13.0	
Old Tampa Bay	28	8.1	5.3	5.9 5.9 - 5.9	7.4 7.4 - 7.4	8.6 8.6 - 8.7	9.8 9.8 – 10.0	12.4 12.4 - 12.8	
Old Tampa Bay	29	6.9	5.2	5.9 5.9 - 5.9	7.3 7.3 - 7.5	8.5 8.5 - 8.7	9.6 9.6 - 9.8	12.2 12.2 - 12.5	
Old Tampa Bay	30	8.7	5.0	5.8 5.8 - 6.0	7.2 7.2 - 7.5	8.4 8.4 - 8.7	9.5 9.5 - 9.9	12.0 12.0 - 12.5	
Old Tampa Bay	31	8.5	4.9	5.8 5.8 - 5.8	7.2 7.2 - 7.4	8.4 8.4 - 8.6	9.4 9.4 - 9.8	12.0 12.0 - 12.4	
Tampa Bay	32	7.1	4.9	5.9 5.9 - 6.0	7.4 7.4 - 7.5	8.5 8.5 - 8.7	9.6 9.6 - 9.9	12.3 12.3 - 13.0	
Tampa Bay	33	7.3	4.8	5.9 5.9 - 6.0	7.3 7.3 - 7.6	8.5 8.5 - 8.8	9.7 9.7 – 10.0	12.3 12.3 - 13.4	

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Tampa Bay	34	7.3	5.4	5.9 5.9 - 6.0	7.4 7.4 - 7.5	8.6 8.6 - 8.8	9.7 9.7 - 10.1	12.4 12.4 - 12.8
Tampa Bay	35	7.3	5.8	5.9 5.9 - 6.0	7.4 7.4 - 7.5	8.6 8.6 - 8.7	9.8 9.8 - 10.1	12.5 12.5 - 13
Tampa Bay	36	7.2	6.0	5.9 5.9 - 5.9	7.4 7.4 - 7.4	8.6 8.6 - 8.8	9.8 9.8 - 10.1	12.6 12.6 - 12.9
Tampa Bay	37	6.1	6.2	5.9 5.9 - 5.9	7.4 7.4 - 7.5	8.7 8.7 - 8.8	9.9 9.9 - 10.1	12.7 12.7 - 12.9
Tampa Bay	38	6.8	6.7	5.9 5.9 - 5.8	7.4 7.4 - 7.4	8.7 8.7 - 8.7	9.9 9.9 - 9.9	12.7 12.7 - 12.8
Tampa Bay	39	6.0	6.6	5.8 5.8 - 5.9	7.3 7.3 - 7.5	8.6 8.6 - 8.8	9.9 9.9 - 10.0	12.7 12.7 - 12.9
Hillsborough Bay	40	6.1	4.4	5.9 5.8 - 5.9	7.4 7.3 - 7.4	8.8 8.8 - 8.6	10.0 9.9 - 10.0	12.9 12.9 - 12.9
Hillsborough Bay	41	5.7	4.2	5.9 5.9 - 5.9	7.5 7.5 - 7.4	8.8 8.8 - 8.5	10.1 9.9 – 10.1	13.0 13.0 - 12.9
Hillsborough Bay	42	5.8	4.8	5.9 5.9 - 5.9	7.5 7.5 - 7.5	8.9 8.5 - 8.9	10.1 9.9 - 10.1	13.1 12.9 - 13.1
Hillsborough Bay	43	4.9	3.5	6.0 5.7 - 6.0	7.6 7.2 - 7.6	8.9 8.5 - 8.9	10.2 9.9 - 10.2	13.1 13.0 - 13.1
Hillsborough Bay	44	4.4	3.0	6.0 5.9 - 6.0	7.6 7.6 - 7.6	8.9 8.8 - 8.9	10.2 9.9 - 10.2	13.1 12.9 - 13.1

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance				er Elevations (ft NAVD88) ter Elevations (ft NAVD88)			
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance		
Hillsborough Bay	45	4.1	2.9	6.0 5.9 - 6.0	7.6 7.4 - 7.6	8.9 8.8 - 8.9	10.2 10.1 - 10.2	13.1 12.9 - 13.1		
Hillsborough Bay	46	3.8	2.9	6.0 6.0 - 6.0	7.6 7.5 - 7.6	8.9 8.7 - 8.9	10.2 10.0 - 10.2	13.1 12.3 - 13.1		
Hillsborough Bay	47	4.2	3.3	6.0 6.0 - 6.0	7.6 7.6 - 7.6	8.9 8.9 - 8.9	10.2 10.1 - 10.2	13.1 13.1 - 13.2		
Hillsborough Bay	48	4.9	4.0	6.0 6.0 - 6.0	7.6 7.6 - 7.6	9.0 9.0 - 9.0	10.2 10.1 - 10.2	13.1 13.1 - 13.1		
Hillsborough Bay	49	5.1	4.4	6.0 6.0 - 6.0	7.6 7.6 - 7.6	9.0 8.9 - 9.0	10.3 10.1 - 10.3	13.2 13.2 - 13.2		
Hillsborough Bay	50	4.6	3.9	6.1 6.1 - 6.1	7.7 7.7 - 7.7	9.0 8.9 - 9.0	10.3 10.1 - 10.3	13.2 13.2 - 13.3		
Hillsborough Bay	51	4.1	3.9	6.1 6.1 - 6.1	7.7 7.7 - 7.7	9.1 9.0 - 9.1	10.3 10.3 - 10.3	13.2 13.2 - 14.4		
Hillsborough Bay	52	4.7	3.7	6.1 6.1 - 6.1	7.7 7.7 - 7.7	9.1 9.1 - 9.1	10.4 10.4 - 10.7	13.2 13.2 - 13.9		
Hillsborough Bay	53	4.8	4.0	6.1 6.1 - 6.2	7.8 7.8 - 7.8	9.2 9.2 - 9.2	10.4 10.4 - 10.6	13.3 13.3 - 14.1		
Hillsborough Bay	54	5.0	4.1	6.2 6.2 - 6.2	7.8 7.8 - 7.8	9.2 9.2 - 9.4	10.5 10.5 - 10.7	13.4 13.4 - 13.9		
Hillsborough Bay	55	5.6	4.1	6.2 6.2 - 6.3	7.9 7.9 - 8.1	9.3 9.3 - 9.6	10.6 10.6 - 11.0	13.5 13.5 - 14.9		

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations illwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Hillsborough Bay	56	6.4	4.5	6.3 6.3 - 6.3	8.0 8.0 - 8.0	9.4 9.4 - 9.5	10.7 10.7 - 10.8	13.6 13.6 - 13.7
Hillsborough Bay	57	6.1	4.6	6.3 6.3 - 6.4	8.0 8.0 - 8.2	9.4 9.4 - 9.7	10.8 10.8 - 11.1	13.7 13.7 - 14.1
Hillsborough Bay	58	5.6	4.6	6.4 6.4 - 6.5	8.1 8.1 - 8.2	9.5 9.5 - 9.7	10.9 10.9 - 11.1	13.9 13.9 - 14.1
Hillsborough Bay	59	7.7	4.7	6.4 6.4 - 6.5	8.1 8.1 - 8.2	9.6 9.6 - 9.8	11.0 11.0 - 11.2	14.0 14.0 - 14.3
Hillsborough Bay	60	6.3	4.7	6.4 6.4 - 6.4	8.1 8.1 - 8.1	9.5 9.5 - 9.6	10.9 10.9 - 11.0	13.9 13.9 - 14.1
Hillsborough Bay	61	7.4	4.6	6.3 6.3 - 6.3	8.0 8.0 - 8.0	9.5 9.5 - 9.5	10.8 10.8 - 10.9	13.8 13.8 - 14.0
Hillsborough Bay	62	7.9	4.5	6.2 6.2 - 6.2	7.9 7.9 - 7.9	9.4 9.4 - 9.4	10.7 10.7 - 10.8	13.7 13.7 - 14.0
Hillsborough Bay	63	7.0	4.4	6.2 6.2 - 6.3	7.9 7.9 - 8	9.3 9.3 - 9.5	10.6 10.6 - 10.8	13.6 13.6 - 13.9
Hillsborough Bay	64	7.9	4.7	6.2 6.2 - 6.2	7.9 7.9 - 7.9	9.3 9.3 - 9.4	10.6 10.6 - 10.8	13.7 13.7 - 13.9
Hillsborough Bay	65	8.3	5.2	6.2 6.2 - 6.3	7.9 7.9 - 8.0	9.3 9.3 - 9.5	10.7 10.7 - 10.9	13.7 13.7 - 14.0
Hillsborough Bay	66	8.7	5.2	6.3 6.3 - 6.3	8.0 8.0 - 8.1	9.5 9.5 - 9.7	10.8 10.8 - 11.1	13.9 13.9 - 14.3

Table 16: Coastal Transect Parameters (continued)

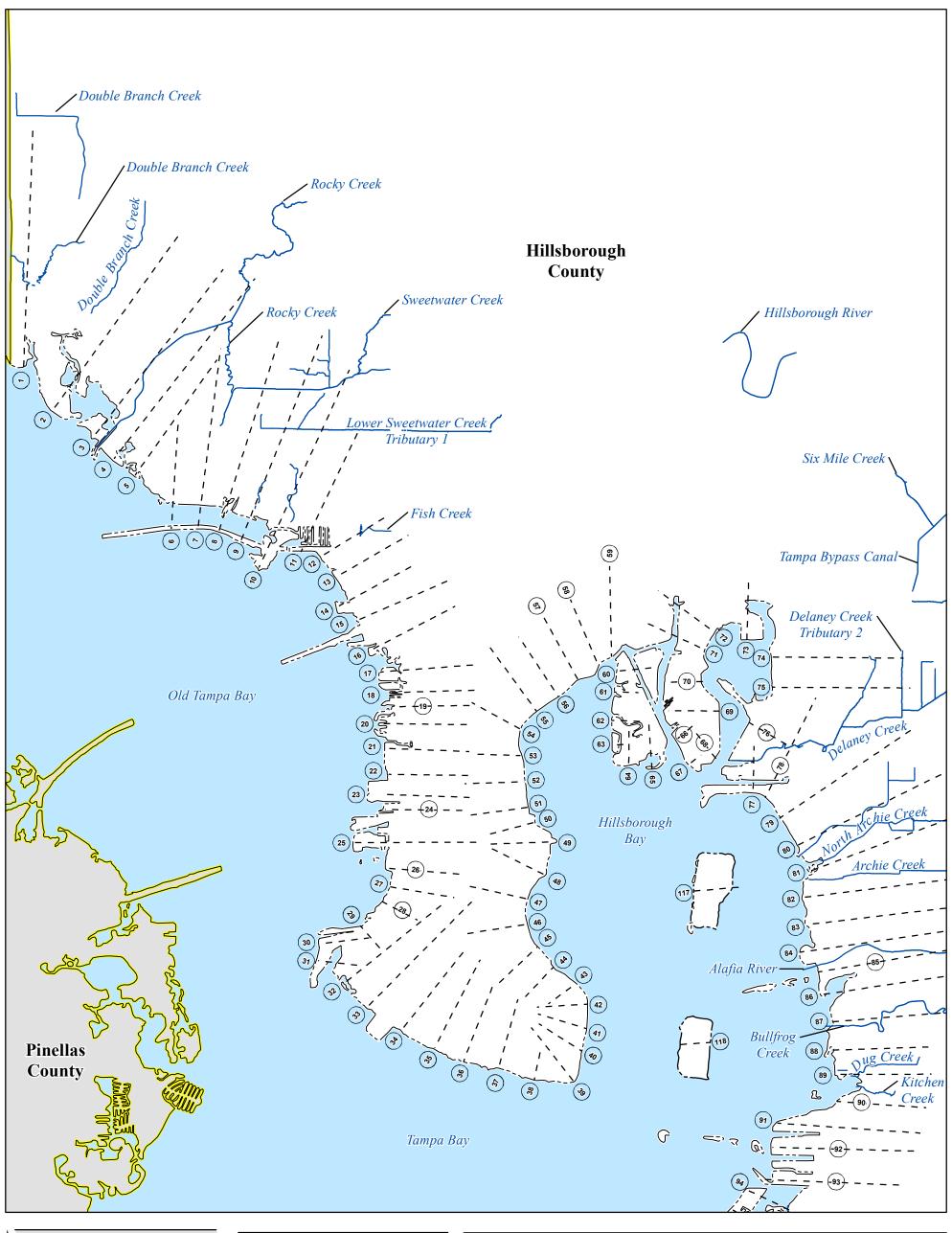
		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations (Ilwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Hillsborough Bay	67	10.4	5.4	6.2 6.2 - 6.3	7.9 7.9 - 8.0	9.4 9.4 - 9.5	10.8 10.8 - 11	13.9 13.9 - 14.4
Hillsborough Bay	68	9.5	5.3	6.3 6.3 - 6.3	8.0 8.0 – 8.0	9.5 9.5 - 9.6	10.9 10.9 - 11	14.1 14.1 - 14.2
Hillsborough Bay	69	9.1	5.3	6.4 6.3 - 6.4	8.1 8.1 - 8.1	9.6 9.6 - 9.6	11.1 11.1 - 11	14.2 14.1 - 14.2
Hillsborough Bay	70	8.8	5.2	6.4 6.4 - 6.4	8.1 8.1 - 8.1	9.6 9.6 - 9.6	11.0 11.0 - 11.0	14.2 14.1 - 14.2
Hillsborough Bay	71	8.8	5.2	6.4 6.4 - 6.4	8.1 8.1 - 8.1	9.6 9.6 - 9.7	11.1 11.1 - 11.1	14.2 14.2 - 14.3
Hillsborough Bay	72	8.2	5.0	6.5 6.4 - 6.5	8.3 8.2 - 8.3	9.8 9.7 - 9.8	11.2 11.2 - 11.2	14.4 14.3 - 14.4
Hillsborough Bay	73	9.0	5.3	6.6 6.6 - 6.9	8.4 8.4 - 8.7	10.0 10.0 - 10.2	11.5 11.5 - 11.6	14.7 14.7 - 14.8
Hillsborough Bay	74	9.0	5.3	6.7 6.7 - 7.4	8.5 8.5 - 9.3	10.1 10.1 - 11.1	11.6 11.6 - 12.8	14.8 14.8 - 16.4
Hillsborough Bay	75	9.1	5.3	6.6 6.6 - 7.4	8.4 8.4 - 9.3	9.9 9.9 - 11.1	11.4 11.4 - 12.7	14.7 14.7 - 15.7
Hillsborough Bay	76	9.6	5.3	6.5 6.2 - 6.5	8.2 7.8 - 8.2	9.7 9.4 - 9.7	11.1 11.0 - 11.1	14.3 14.3 - 14.5
Hillsborough Bay	77	5.8	4.5	6.4 6.2 - 6.4	8.2 7.8 - 8.2	9.7 9.7 - 9.7	11.2 11.0 - 11.2	14.4 14.3 - 14.4

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations Ilwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Hillsborough Bay	78	5.9	4.5	6.5 6.5 - 6.6	8.2 8.2 - 8.4	9.8 9.8 - 10.0	11.3 11.3 - 11.6	14.5 14.5 - 15.0
Hillsborough Bay	79	5.8	4.6	6.4 6.4 - 7.4	8.2 8.2 - 8.3	9.8 9.8 - 9.9	11.2 10.9 - 11.2	14.5 14.5 - 15.4
Hillsborough Bay	80	6.2	5.0	6.4 6.4 - 6.5	8.2 8.2 - 8.3	9.8 9.8 - 9.9	11.2 11.2 - 11.8	14.5 14.5 - 15.3
Hillsborough Bay	81	6.2	5.1	6.4 6.4 - 6.5	8.2 8.2 - 8.4	9.7 9.7 - 9.9	11.2 11.2 - 11.8	14.5 14.5 - 14.9
Hillsborough Bay	82	6.5	5.4	6.3 6.3 - 6.4	8.0 8.0 - 8.3	9.6 9.6 - 10.0	11.1 11.1 - 11.6	14.3 14.3 - 15.4
Hillsborough Bay	83	5.9	5.2	6.3 6.3 - 6.4	8.0 8.0 - 8.3	9.6 9.6 - 10.0	11.0 11.0 - 11.5	14.3 14.3 - 15.1
Hillsborough Bay	84	5.8	4.8	6.2 6.2 - 6.4	7.9 7.9 - 8.3	9.4 9.4 - 9.9	10.8 10.8 - 11.5	14.1 14.1 - 15.1
Hillsborough Bay	85	5.0	4.6	6.2 6.2 - 6.2	7.9 7.9 - 8.4	9.5 9.5 - 10.0	11.0 11.0 - 11.8	14.3 14.3 - 15.5
Hillsborough Bay	86	5.1	4.8	6.2 6.2 - 6.3	7.9 7.9 - 8.2	9.5 9.5 - 9.9	11.0 11.0 - 11.4	14.3 14.3 - 15.0
Hillsborough Bay	87	5.1	5.1	6.1 6.1 - 6.3	7.9 7.9 - 8.2	9.5 9.5 - 9.8	11.0 11.0 - 11.4	14.3 14.3 - 15.0
Hillsborough Bay	88	5.8	5.3	6.1 6.1 - 6.2	7.8 7.8 - 8.0	9.4 9.4 - 9.7	10.9 10.9 - 11.1	14.2 14.2 - 14.8

Table 16: Coastal Transect Parameters (continued)

		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations Ilwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Hillsborough Bay	89	5.2	4.7	6.0 6.0 - 6.0	7.8 7.8 - 7.8	9.3 9.3 - 9.5	10.8 10.8 - 10.9	14.1 14.1 - 14.5
Hillsborough Bay	90	4.8	3.7	6.0 5.9 - 6.0	7.7 7.5 - 7.7	9.3 9.3 - 9.3	10.7 10.7 - 10.9	14.0 14.0 - 14.5
Tampa Bay	91	7.6	5.5	5.9 5.9 - 5.9	7.5 7.5 - 7.7	8.9 8.9 - 9.2	10.3 10.3 - 10.8	13.4 13.4 - 14.2
Tampa Bay	92	5.3	5.5	5.8 5.8 - 5.9	7.5 7.5 - 7.7	9.0 9.0 - 9.2	10.4 10.4 - 10.7	13.6 13.6 - 14.0
Tampa Bay	93	6.8	5.8	5.8 5.8 - 6	7.5 7.5 - 7.7	8.9 8.9 - 9.0	10.3 10.3 - 10.6	13.4 13.4 - 13.4
Tampa Bay	94	7.4	5.8	5.8 5.8 - 5.7	7.4 7.4 - 7.4	8.8 8.8 - 8.7	10.1 10.1 - 10.3	13.3 13.3 - 13.6
Tampa Bay	95	7.7	5.8	5.7 5.7 - 5.7	7.3 7.3 - 7.3	8.7 8.7 - 8.7	10.1 10.1 - 10.2	13.2 13.2 - 13.4
Tampa Bay	96	8.0	5.7	5.7 5.7 - 5.7	7.3 7.3 - 7.3	8.7 8.7 - 8.8	10.0 10.0 - 10.2	13.1 13.1 - 13.5
Tampa Bay	97	7.7	5.5	5.7 5.7 - 5.8	7.2 7.2 - 7.4	8.6 8.6 - 8.8	9.9 9.9 - 10.2	12.9 12.9 - 13.4
Tampa Bay	98	5.7	5.4	5.7 5.7 - 5.7	7.3 7.0 - 7.3	8.7 8.3 - 8.7	10.0 9.8 – 10.0	13.1 13.1 - 13.5
Tampa Bay	99	5.0	4.3	5.7 5.5 - 5.7	7.2 7.0 - 7.2	8.6 8.1 - 8.6	9.9 9.4 - 9.9	12.9 12.9 - 13.0


Table 16: Coastal Transect Parameters (continued)

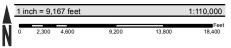

		Starting Wave the 1% Ann	Conditions for ual Chance			lwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Tampa Bay	100	5.2	4.1	5.7 5.3 - 5.7	7.2 6.7 - 7.2	8.5 7.9 - 8.5	9.8 9.4 - 9.8	12.7 12.1 - 12.7
Tampa Bay	101	5.1	4.1	5.6 4.5 - 5.6	7.1 5.6 - 7.1	8.4 6.4 - 8.4	9.7 7.1 - 9.7	12.6 11.5 - 12.6
Tampa Bay	102	5.0	3.9	5.6 4.8 - 5.6	7.1 6.0 - 7.1	8.3 7.6 - 8.3	9.6 9.1 - 9.6	12.5 11.9 - 12.5
Tampa Bay	103	5.2	4.0	5.6 4.8 - 5.6	7.0 6.0 - 7.0	8.3 7.0 - 8.3	9.5 8.1 - 9.5	12.4 11.0 - 12.4
Tampa Bay	104	5.2	4.9	5.5 4.8 - 5.5	7.0 6.0 - 7.0	8.2 7.0 - 8.2	9.4 8.1 - 9.4	12.2 10.7 - 12.2
Gulf of Mexico	105	6.9	5.5	4.8 4.5 - 4.8	5.9 5.5 - 5.9	6.8 6.3 - 6.8	7.8 7.0 - 7.8	10.6 9.2 - 10.2
Tampa Bay	106	6.7	4.5	5.5 5.1 - 5.5	7.0 6.4 - 7.0	8.2 7.6 - 8.2	9.5 8.8 - 9.5	12.3 11.6 - 12.3
Tampa Bay	107	4.7	4.8	5.5 4.7 - 5.5	6.9 5.9 - 6.9	8.2 6.9 - 8.2	9.3 7.9 - 9.3	12.1 10.5 - 12.1
Tampa Bay	108	5.1	3.8	5.4 4.8 - 5.4	6.9 6.1 - 6.9	8.1 7.1 - 8.1	9.2 8.1 - 9.2	12.0 10.8 - 12.0
Tampa Bay	109	7.2	5.1	5.4 4.9 - 5.4	6.8 6.2 - 6.8	8.0 7.7 - 8.0	9.1 9.1 - 9.1	11.8 11.7 - 11.8
Tampa Bay	110	6.7	5.0	5.4 4.7 - 5.4	6.7 6.0 - 6.7	7.9 7.1 - 7.9	9.0 8.5 - 9.0	11.7 11.6 - 11.7

Table 16: Coastal Transect Parameters (continued)

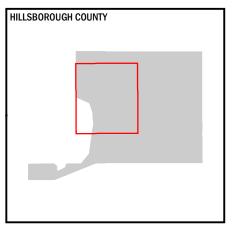
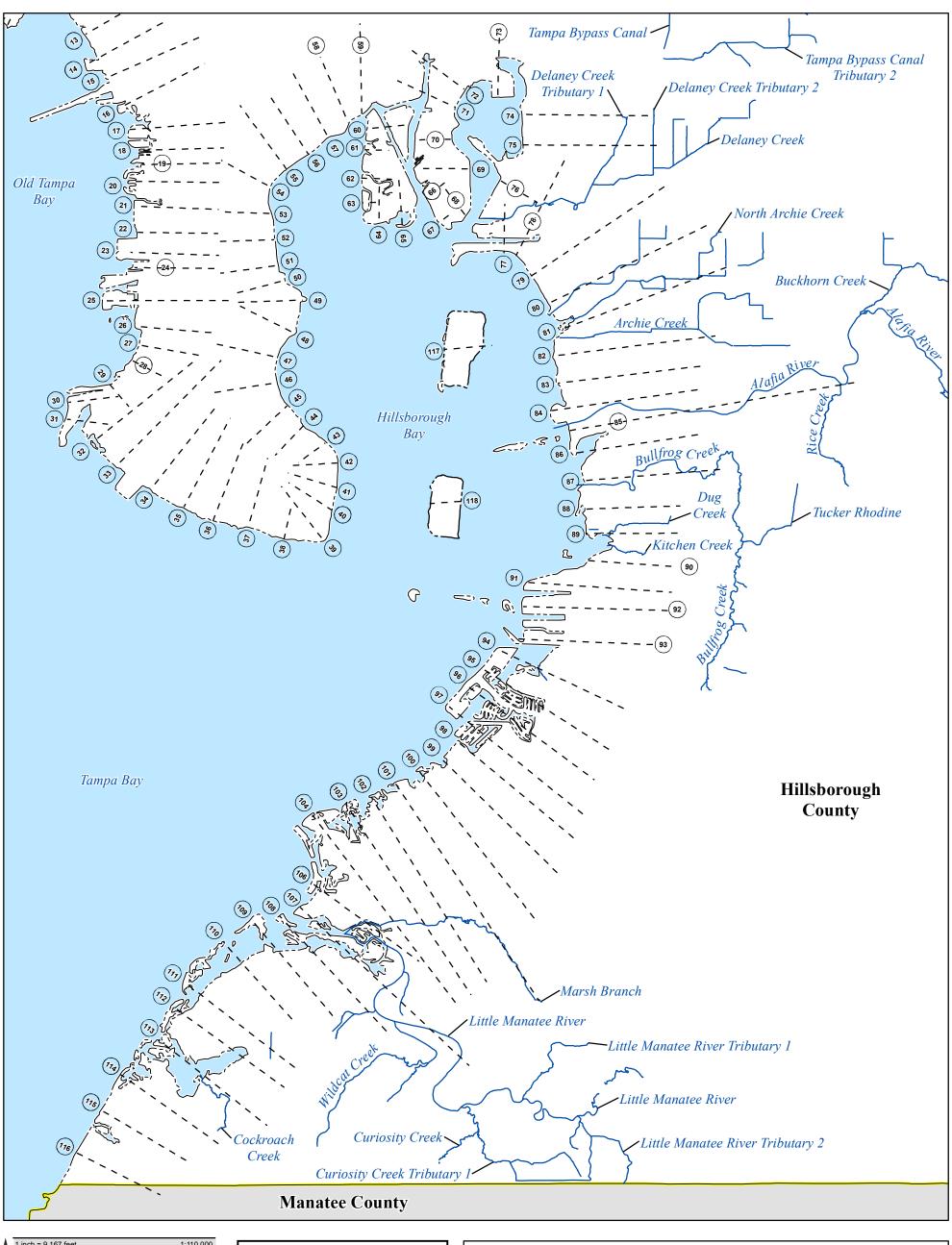

			Starting Wave Conditions for the 1% Annual Chance			lwater Elevations Ilwater Elevations		
Flood Source	Coastal Transect	Significant Wave Height H _s (ft)	Peak Wave Period T _p (sec)	10% Annual Chance	4% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Tampa Bay	111	4.5	4.9	5.3 4.8 - 5.3	6.7 6.0 - 6.7	7.8 7.2 - 7.8	8.9 8.5 - 8.8	11.5 11.5 - 11.5
Tampa Bay	112	5.6	5.7	5.3 4.8 - 5.3	6.6 6.4 - 6.6	7.7 7.5 - 7.7	8.8 8.5 - 8.8	11.4 11.4 - 11.5
Tampa Bay	113	4.7	4.4	5.2 5.0 - 5.2	6.5 6.3 - 6.5	7.6 7.5 - 7.6	8.7 8.6 - 8.7	11.3 11.3 - 11.4
Tampa Bay	114	6.1	6.1	5.2 4.8 - 5.2	6.5 6.1 - 6.5	7.5 7.3 - 7.5	8.5 8.5 - 8.5	11.1 11.1 - 11.2
Tampa Bay	115	6.5	6.0	5.1 4.7 - 5.1	6.4 6.0 - 6.4	7.4 7.2 - 7.4	8.4 8.4 - 8.4	10.9 10.9 - 11.1
Tampa Bay	116	7.0	6.0	5.0 4.8 - 5.0	6.3 6.1 - 6.3	7.3 7.2 - 7.3	8.3 8.3 - 8.3	10.7 10.7 - 10.9
Hillsborough Bay	117	8.2	5.3	6.1 6.1 - 6.1	7.7 7.7 - 7.8	9.1 9.1 - 9.3	10.5 10.5 - 10.7	13.5 13.5 - 13.9
Hillsborough Bay	118	6.7	4.2	5.9 5.9 - 5.9	7.5 7.5 - 7.5	8.9 8.8 - 8.9	10.3 10.1 - 10.3	13.4 13.1 - 13.4

Figure 9: Transect Location Map

Map Projection: State Plane Florida West (FIPS Zone 0902) Coordinate System, North American Datum 1983,

NATIONAL FLOOD INSURANCE PROGRAM


Transect Locator Map

PANELS WITH TRANSECTS

 $\begin{array}{c} 0159,\, 0167,\, 0169,\, 0186,\, 0187,\, 0188,\, 0189,\, 0193,\, 0326,\, 0327,\\ 0329,\, 0331,\, 0332,\, 0333,\, 0334,\, 0341,\, 0342,\, 0343,\, 0344,\, 0353,\\ 0354,\, 0358,\, 0359,\, 0361,\, 0362,\, 0363,\, 0366,\, 0367,\, 0368,\, 0369,\\ 0386,\, 0388,\, 0456,\, 0457,\, 0458,\, 0459,\, 0476,\, 0478,\, 0479,\, 0481,\\ 0482,\, 0483,\, 0484,\, 0491,\, 0492,\, 0494,\, 0501,\, 0502,\, 0503,\, 0511 \end{array}$

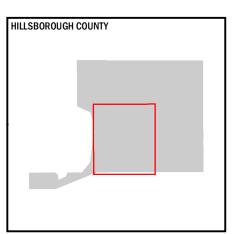


Figure 9: Transect Location Map (continued)

Map Projection: State Plane Florida West (FIPS Zone 0902) Coordinate System, North American Datum 1983,

NATIONAL FLOOD INSURANCE PROGRAM

Transect Locator Map

PANELS WITH TRANSECTS

 $0332, 0333, 0334, 0341, 0342, 0343, 0344, 0353, 0354, 0358, \\0359, 0361, 0362, 0363, 0366, 0367, 0368, 0369, 0386, 0388, \\0456, 0457, 0458, 0459, 0476, 0478, 0479, 0481, 0482, 0483, \\0484, 0489, 0491, 0492, 0493, 0494, 0501, 0502, 0503, 0511, \\0634, 0641, 0642, 0643, 0644, 0651, 0652, 0653, 0654, 0656, \\0657, 0658, 0661, 0662, 0670, 0759$

5.4 Alluvial Fan Analyses

This section is not applicable to this Flood Risk Project.

Table 17: Summary of Alluvial Fan Analyses
[Not Applicable to this Flood Risk Project]

Table 18: Results of Alluvial Fan Analyses [Not Applicable to this Flood Risk Project]

SECTION 6.0 – MAPPING METHODS

6.1 Vertical and Horizontal Control

All FIS Reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS Reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the completion of the North American Vertical Datum of 1988 (NAVD88), many FIS Reports and FIRMs are now prepared using NAVD88 as the referenced vertical datum.

Flood elevations shown in this FIS Report and on the FIRMs are referenced to NAVD88. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between NGVD29 and NAVD88 or other datum conversion, visit the National Geodetic Survey website at www.ngs.noaa.gov.

Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the archived project documentation associated with the FIS Report and the FIRMs for this community. Interested individuals may contact FEMA to access these data.

To obtain current elevation, description, and/or location information for benchmarks in the area, please visit the NGS website at www.ngs.noaa.gov.

A countywide conversion factor of -0.89 feet for riverine areas and -1.00 feet for the coastal areas was calculated for the previous Hillsborough County FIS (FEMA 2013).

Table 19: Countywide Vertical Datum Conversion
[Not Applicable to this Flood Risk Project]

Table 20: Stream-Based Vertical Datum Conversion [Not Applicable to this Flood Risk Project]

6.2 Base Map

The FIRMs and FIS Report for this project have been produced in a digital format. The flood hazard information was converted to a Geographic Information System (GIS) format that meets FEMA's FIRM Database specifications and geographic information standards. This information is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community. The FIRM Database includes most of the tabular information contained in the FIS Report in such a way that the data can be associated with pertinent spatial features. For example, the information contained in the Floodway Data table and Flood Profiles can be linked to the cross sections that are shown on the FIRMs. Additional information about the FIRM Database and its contents can be found in FEMA's *Guidelines and Standards for Flood Risk Analysis and Mapping*, www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping.

Base map information shown on the FIRM was derived from the sources described in Table 21.

Table 21: Base Map Sources

Data Type	Data Provider	Data Date	Data Scale	Data Description
Coastal Barrier Resources System (CBRS)	U.S. Fish and Wildlife Service	2018	1:24,000	John H. Chafee Coastal Barrier Resources System
Digital Orthophoto	Florida Department of Transportation	2017	1:100	Digital orthoimagery for Hillsborough, Manatee, and Pinellas County, Florida
Digital Orthophoto	United States Department of Agriculture – Farm Service Agency	2016	1:600	Digital orthoimagery for open water areas in Hillsborough County, Florida
Political boundaries	Hillsborough County	2018	1:5,000	Municipal boundaries
Public Land Survey System (PLSS)	Florida Resources and Environmental Analysis Center	2003	1:24,000	Public Land Survey System
Surface Water Features	Hillsborough County	2008	1:6,000	Base map surface water features
Transportation Features	Hillsborough County	2018	*	Roads and railroads within Hillsborough County, Florida

^{*}Data not available

6.3 Floodplain and Floodway Delineation

The FIRM shows tints, screens, and symbols to indicate floodplains and floodways as well as the locations of selected cross sections used in the hydraulic analyses and floodway computations.

For riverine flooding sources, the mapped floodplain boundaries shown on the FIRM have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 22. For each coastal flooding source studied as part of this FIS Report, the mapped floodplain boundaries on the FIRM have been delineated using the flood and wave elevations determined at each transect; between transects, boundaries were delineated using land use and land cover data, the topographic elevation data described in Table 22, and knowledge of coastal flood processes. In ponding areas, flood elevations were determined at each junction of the model; between junctions, boundaries were interpolated using the topographic elevation data described in Table 22.

In cases where the 1% and 0.2% annual chance floodplain boundaries are close together, only the 1% annual chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

The floodway widths presented in this FIS Report and on the FIRM were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. Table 2 indicates the flooding sources for which floodways have been determined. The results of the floodway computations for those flooding sources have been tabulated for selected cross sections and are shown in Table 23, "Floodway Data."

Table 22: Summary of Topographic Elevation Data used in Mapping

		Source for T	opographic E	levation Data	
Community	Flooding Source	Description	Vertical Accuracy	Horizontal Accuracy	Citation
Hillsborough County, Unincorporated Areas; Tampa, City of	Hillsborough Bay, Gulf of Mexico, Old Tampa Bay, Tampa Bay	Light Detection and Ranging data (LiDAR)	0.43 ft RMSEz	N/A	FDEM 2007
Hillsborough County, Unincorporated Areas	Delaney Creek, Delaney Creek Lateral C, Delaney Creek Lateral D, Delaney Creek Lateral E	Light Detection and Ranging data (LiDAR)	0.6 ft RMSEz	N/A	SWFWMD 2007

Table 22: Summary of Topographic Elevation Data used in Mapping (continued)

		Source for Topographic Elevation Data						
Community	Flooding Source	Description	Vertical Accuracy	Horizontal Accuracy	Citation			
Hillsborough County, Unincorporated Areas; Plant City, City of; Tampa, City of; Temple Terrace, City of	All sources studied for the FIS dated 08/28/2008	Topographic maps	N/A	N/A	SWFWMD undated			
Tampa, City of	Hillsborough Bay	As-Built Data	N/A	N/A	PTB 2018			

BFEs shown at cross sections on the FIRM represent the 1% annual chance water surface elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations.

Table 23: Floodway Data

LOCAT	ΓΙΟΝ		FLOODWAY		1% ANNUAL CH	HANCE FLOOD (FEET N	WATER SURFAC	E ELEVATION
CROSS SECTION	DISTANCE ²	WIDTH (FEET)	SECTION AREA (SQ. FEET)	MEAN VELOCITY (FEET/SEC)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
- 1						4		
A_{\perp}^{1}	1,800	N/A	N/A	N/A	*	2.54	N/A	N/A
B ¹	4,200	N/A	N/A	N/A	*	3.1 ⁴	N/A	N/A
C ¹	8,160	N/A	N/A	N/A	*	3.9 ⁴	N/A	N/A
D	11,440	968	9,974	2.6	11.6 ³	4.9 ⁴	5.5	0.6
E	14,940	515	6,104	4.2	11.7 ³	5.9 ⁴	6.4	0.5
F	20,080	370	6,362	4.1	12.1 ³	8.2^{4}	8.8	0.6
G	23,500	259	4,609	5.7	12.4 ³	9.2^{4}	9.8	0.6
Н	25,640	376	5,730	4.6	12.7 ³	10.2 ⁴	11.0	0.8
I	31,080	548	7,113	3.7	13.9 ³	13.1 ⁴	14.0	0.9
J	33,900	306	5,258	5.0	14.7 ³	14.2 ⁴	15.0	0.8
K	36,220	836	11,289	2.3	16.1 ³	15.8 ⁴	16.7	0.9
L	39,000	273	4,007	5.9	16.3 ³	16.0 ⁴	17.0	1.0
M	43,410	477	6,376	3.7	17.7 ³	17.6 ⁴	18.6	1.0
N	44,840	278	4,297	5.5	18.2 ³	18.1 ⁴	19.1	1.0
0	45,940	763	9,680	2.4	19.3	19.3	20.1	8.0
Р	47,680	880	11,924	2.0	19.7	19.7	20.6	0.9
Q	52,140	341	3,628	6.5	20.8	20.8	21.6	0.8
R	55,210	528	6,056	3.9	23.3	23.3	24.0	0.7
S	57,720	391	5,910	4.0	25.4	25.4	26.2	0.8
Т	60,560	339	6,093	3.9	27.0	27.0	27.8	0.8
U	62,840	1,043	17,450	1.4	27.8	27.8	28.7	0.9
V	65,400	967	16,040	1.5	28.3	28.3	29.2	0.9

¹Floodway not shown for this cross section
²Feet above U.S. Highway 41
³Combined coastal and riverine effects from Gulf of Mexico and Alafia River
⁴Elevation computed without consideration of backwater effects from Gulf of Mexico
*Controlled by coastal flooding – see Flood Insurance Rate Map for regulatory base flood elevation

ΤA	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA
ᄠ	HILLSBOROUGH COUNTY, FLORIDA	
23	AND INCORPORATED AREAS	FLOODING SOURCE: ALAFIA RIVER

LOCA	TION		FLOODWA	Y	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQ. FEET)	MEAN VELOCITY (FEET/SEC)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
W X Y Z AA AB AC AD AE AF AG	70,400 72,980 74,480 77,860 81,400 87,100 90,020 98,980 105,700 114,160 120,990	1,449 1,186 552 1,360 969 1,89 1,780 1,085 1,462 2,081 949	21,383 15,931 8,381 17,885 12,408 18,613 17,238 9,615 16,620 22,464 11,155	1.0 1.3 2.5 1.2 1.7 1.1 1.2 1.9 1.1 0.8 1.6	29.0 29.2 29.3 29.5 30.4 31.1 32.0 37.0 40.4 42.1 45.0	29.0 29.2 29.3 29.5 30.4 31.1 32.0 37.0 40.4 42.1 45.0	30.0 30.2 30.3 30.5 31.3 32.1 33.0 37.7 41.3 43.1 45.9	1.0 1.0 1.0 1.0 0.9 1.0 0.7 0.9 1.0 0.9	

¹Feet above U.S. Highway 41

TA	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA
BLE	HILLSBOROUGH COUNTY, FLORIDA	. 200211711 271171
23	AND INCORPORATED AREAS	FLOODING SOURCE: ALAFIA RIVER

	LOCATION			FLOODWAY	1	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
903945	9985100	0	800	1,160	1.0	82.1	82.1	82.8	0.7	
985100	9985150	2,467	395	1,250	2.1	82.2	82.2	82.9	0.7	
985150		3,294	533		1.9	84.8	84.8	84.8	0.0	
985250	9985250	5,464	236	1,140	0.4	90.5	90.5	90.5	0.0	
985400	9985400	7,492		2,170		90.5	90.5	90.5	0.0	
985350	9985350	9,312	401	1,600	1.5	105.2	105.2	105.3	0.1	
985445	1985445	9,341	550	1,600	9.2	105.6	105.6	105.6	0.0	
985450	9985450	11,482	481	1,490	0.7	106.0	106.0	106.0	0.0	
985540	9985540	14,072	297	1,010	1.0	108.9	108.9	108.9	0.0	
985550	9985550	16,342	205	1,070	1.2	110.7	110.7	110.7	0.0	
985900	9985900	19,057	280	600	0.8	113.0	113.0	113.0	0.0	
985850	9985850	20,121	356	440	0.6	115.3	115.3	115.3	0.0	
986000	9986000	21,617	498	198	0.5	119.4	119.4	119.4	0.0	
986010	9986010	22,165	76	0.1	0.2	122.6	122.6	122.6	0.0	

¹Feet above confluence with Little Manatee River

FEDERAL EMERGENCY MANAGEMENT AGENCY
HILLSBOROUGH COUNTY, FLORIDA
AND INCORPORATED AREAS
FLOODING SOURCE: ALDERMAN CREEK

	LOCATION			FLOODWAY	(1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ²	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
280089 ¹	9280300 ¹	0	N/A	N/A	N/A	*	10.4 ⁴	N/A	N/A	
280300 ¹		200				*	11.1 ⁴	N/A	N/A	
280305	1280305	232	28	433	2.4	12.3 ³	11.3 ⁴	11.3	0.0	
280350	9280350	932	35	407	3.8	13.2 ³	12.7 ⁴	12.7	0.0	
280354	1280354	953	30	136	7.3	14.6 ³	14.2 ⁴	14.2	0.0	
280355	9280355	1,349	47	407	1.8	14.7 ³	14.3 ⁴	14.3	0.0	
280375	9280375	1,745	40	616	4.1	14.7 ³	14.4 ⁴	14.4	0.0	
280380	9280380	2,560	28	599	5.3	16.2	16.2	16.2	0.0	
280385	9280385	3,530	38	596	3.3	17.0	17.0	17.0	0.0	
280390	9280390	4,410	59	496	2.8	17.6	17.6	17.6	0.0	
280392	9280392	5,630	95	384	1.7	17.8	17.8	17.8	0.0	
280394	9280394	6,570	46	366	2.1	18.2	18.2	18.2	0.0	
280397	1280397	6,590	30	366	4.2	18.7	18.7	18.7	0.0	
	9280398		150	340	1.6					

¹Floodway not shown

FEDERAL EMERGENCY MANAGEMENT AGENCY

TABLE HILLSBOROUGH COUNTY, FLORIDA 23 **AND INCORPORATED AREAS**

FLOODWAY DATA

FLOODING SOURCE: ARCHIE CREEK

²Feet above Limit of Detailed Study (located at a point approximately 200 feet downstream of 78th Street South)

³Combined coastal and riverine effects from Gulf of Mexico and Archie Creek

⁴Elevation computed without consideration of backwater effects from Gulf of Mexico

^{*}Controlled by coastal flooding – see Flood Insurance Rate Map for regulatory base flood elevation

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
		7,400 7,665 7,835 8,690 8,837 9,459			3.7 2.1 2.1 1.9 1.5	18.8 19.2 19.3 19.5 19.5 19.5			0.0 0.0 0.0 0.0 0.0 0.0

¹Feet above Limit of Detailed Study (located at a point approximately 200 feet downstream of 78th Street South)

FEDERAL EMERGENCY MANAGEMENT AGENCY
HILLSBOROUGH COUNTY, FLORIDA
AND INCORPORATED AREAS
FLOODING SOURCE: ARCHIE CREEK

	LOCATION			FLOODWAY	<u>′</u>	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
330100	9330140	0	315	779	1.1	44.1	44.1	44.4	0.3	
330140		470				44.1	44.1	44.1	0.0	
330150	9330150	1,240	545	775	0.3	44.1	44.1	44.1	0.0	
330200	9330200	1,660	710	770	0.3	44.1	44.1	44.1	0.0	
330230	9330230	2,285	1,475	800	0.1	44.1	44.1	44.1	0.0	
330240	9330240	3,125	668	414	0.3	44.1	44.1	44.1	0.0	
330250	9330250	3,750	1,413	375	0.1	44.1	44.1	44.1	0.0	
330260	9330260	4,485	80	368	0.6	44.1	44.1	44.1	0.0	
330270	9330270	4,990	70	367	0.9	44.2	44.2	44.2	0.0	
330280	1330280	5,055	50	368	2.5	44.2	44.2	44.2	0.0	
330300	9330300	7,265	157	373	1.0	44.3	44.3	44.3	0.0	
	9330400	,	138	617	N/A				0.0	
330400	1330500	7,385	150	156	0.9	44.3	44.3	44.3		
330500	9330600	7,655	151	320	0.6	44.3	44.3	44.3	0.0	
330600	9330650	9,075	150	437	1.4	44.3	44.3	44.3	0.0	

¹Feet above confluence with Baker Creek and Lake Thonotosassa Tributary

FLOODWAY DATA

FLOODING SOURCE: BAKER CANAL

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
330650	1330800	9,925	40	433	2.6	44.3	44.3	44.3	0.0	
330800	9330850	10,120	37	280	1.1	44.3	44.3	44.3	0.0	
330850		16,145				45.2	45.2	45.2	0.0	
330900	1330900	16,245	200	16	0.8	45.3	45.3	45.3	0.0	
330950	9330950	16,815	100	293	1.1	45.6	45.6	45.6	0.0	
331000	9331000	18,240	100	180	1.3	45.9	45.9	45.9	0.0	
331050	9331050	19,235	100	213	1.0	46.2	46.2	46.2	0.0	
331070	9331070	19,945	100	213	1.3	46.7	46.7	46.7	0.0	
331080	1331080	19,995	135	213	1.1	46.7	46.7	46.7	0.0	
331100	1331100	20,005	100	214	2.3	46.8	46.8	46.8	0.0	
331150	9331150	21,890	69	220	0.6	47.3	47.3	47.3	0.0	
331180	9331180	23,835	116	1,010	2.5	51.5	51.5	51.5	0.0	
390050	1390050	23,980	200	150	3.6	51.7	51.7	51.7	0.0	
390100	9390100	25,270	64	1,020	2.1	53.9	53.9	53.9	0.0	
	9390150		251	900	0.9					

¹Feet above confluence with Baker Creek and Lake Thonotosassa Tributary

TABLE 23

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

FLOODING SOURCE: BAKER CANAL

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
390150	0000400	26,695	454	000	4.5	54.5	54.5	54.5	0.0	
390180	9390180 1390200	28,560	151 150	903 903	1.5 4.3	56.5	56.5	56.5	0.0	
390200	9390260	28,590	100	877	3.3	57.0	57.0	57.0	0.0	
390260	1390300	29,410	100	506	6.0	59.6	59.6	59.6	0.0	
390300	9390350	29,450	76	876	3.2	60.7	60.7	60.7	0.0	
390350	1390400	29,850	34	354	3.5	63.6	63.6	63.6	0.0	
390400 390500	9390500	29,890 30,640	100	875	1.3	64.9 65.1	64.9 65.1	64.9 65.1	0.0	
390580	9390580	31,990	101	926	1.8	67.1	67.1	67.1	0.0	
390600	1390600	32,050	25	927	4.8	67.8	67.8	67.8	0.0	
390700	9390700	33,930	150	916	2.0	71.6	71.6	71.6	0.0	
390900	9390900	35,395	51	644	3.3	73.5	73.5	73.5	0.0	
391000	9391000 9391100	36,105	51 51	431 683	1.3 2.8	73.7	73.7	73.7	0.0	

¹Feet above confluence with Baker Creek and Lake Thonotosassa Tributary

TAE	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA
3LE	HILLSBOROUGH COUNTY, FLORIDA	
23	AND INCORPORATED AREAS	FLOODING SOURCE: BAKER CANAL

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
391100	0204400	36,775	20	252	2.0	76.1	76.1	76.1	0.0
391180	9391180	38,626	39 200	252 79	2.0 6.2	76.9	76.9	76.9	0.0
391200	1391200	38,696	30	183		78.4	78.4	78.4	0.0
391280	9391280 1391300	39,626	200	47	2.6 8.7	78.6	78.6	78.6	0.0
391300	9391380	39,686	30	135	2.0	79.5	79.5	79.5	0.0
391380	1391400	40,411	30	22	7.0	81.1	81.1	81.1	0.0
391400	9391480	40,451	32	64	1.1	83.1	83.1	83.1	0.0
391480	3031400	41,512	32	04	1	84.2	84.2	84.2	0.0

¹Feet above confluence with Baker Creek and Lake Thonotosassa Tributary

TABLE 23

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODING SOURCE: BAKER CANAL

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
370710	9370710	0	1,060	66	0.1	41.1	41.1	41.1	0.0
370500	9370500	1,616	1,175	152	0.1	41.1	41.1	41.1	0.0
370210	1370210	3,326	100	54	4.3	41.1	41.1	41.1	0.0
370220	9370220	4,006	105	108	0.2	43.8	43.8	43.8	0.0
370100	9370100	6,366	95	536	1.6	43.8	43.8	43.8	0.0
330230	0070100	8,770	00	000	1.0	44.1	44.1	44.1	0.0

¹Feet above Taylor Road

FLOODWAY DATA

FLOODING SOURCE: BAKER CANAL TRIBUTARY 1

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
330100		0				44.1	44.1	44.4	0.3	
340050	9340050	450	125	1,340	2.6	44.4	44.4	44.7	0.3	
340100	1340100	525	60	1,200	2.4	44.5	44.5	44.8	0.3	
340170	9340170	3,200	74	1,340	2.9	49.1	49.1	49.2	0.1	
340200	9340200	4,110	98	1,410	2.3	49.5	49.5	49.8	0.3	
340280	9340280	6,585	82	1,380	3.0	53.6	53.6	54.0	0.4	
340300	1340300	6,630	50	1,070	7.6	54.7	54.7	55.2	0.5	
340400	9340400	7,430	50	1,380	4.3	56.1	56.1	56.6	0.5	
340480	9340480	9,810	98	1,130	2.0	57.5	57.5	58.1	0.6	
340500	1340500	9,910	48	1,140	2.0	57.6	57.6	58.2	0.6	
340550	9340550	10,160	74	1,130	2.9	58.2	58.2	58.2	0.0	
340600	9340600	11,250	512	1,130	1.7	64.3	64.3	64.3	0.0	
340900	9340900	13,610	348	1,090	1.3	67.1	67.1	68.0	0.9	
340900	9341000	13,010	52	1,090	2.8	07.1	07.1	00.0	0.8	

¹Feet above confluence with Lake Thonotosassa Tributary and Baker Canal

FLOODWAY DATA

FLOODING SOURCE: BAKER CREEK/ PEMBERTON CREEK/ MILL CREEK

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
341000	0044400	15,510	4-	4.000		69.8	69.8	70.6	0.8	
341180	9341180	17,170	47	1,090	3.3	72.7	72.7	73.3	0.6	
341200	1341200	17,320	125	273	2.9	72.9	72.9	73.5	0.6	
341400	9341400	19,120	298	1,090	2.2	77.7	77.7	78.6	0.9	
341600	9341600	20,120	243	1,100	0.7	78.0	78.0	79.0	1.0	
341680	9341680	21,500	98	1,020	2.3	79.8	79.8	80.4	0.6	
341700	1341700	21,675	110	255	6.4	80.6	80.6	80.6	0.0	
341800	9341800	23,050	66	1,020	3.3	84.7	84.7	84.8	0.1	
342000	9342000	25,650	98	986	2.0	87.8	87.8	88.5	0.7	
342100	9342100	26,470	98	986	1.7	88.5	88.5	89.0	0.5	
342180	9342180	27,470	810	590	0.5	88.5	88.5	89.0	0.5	
342200	1342200	27,470	110	117	4.6	89.6	89.6	89.6	0.0	
	1342300	,	26	601	3.3					
342300	9342380	27,995	100	492	1.3	89.8	89.8	89.8	0.0	

¹Feet above confluence with Lake Thonotosassa Tributary and Baker Canal

FLOODWAY DATA

FLOODING SOURCE: BAKER CREEK/ PEMBERTON CREEK/ MILL CREEK

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
342380	4040400	31,395	50	00	5.4	94.8	94.8	94.8	0.0	
342400	1342400	31,425	50	66	5.1	95.6	95.6	95.6	0.0	
342480	9342480	36,895	100	370	1.4	103.2	103.2	103.2	0.0	
342500	1342500	36,945	50	57	2.9	103.3	103.3	103.3	0.0	
342540	9342540	40,920	70	377	1.4	104.8	104.8	104.8	0.0	
342550	1342550	40,970	30	137	1.8	105.0	105.0	105.0	0.0	
342700	9342700	41,670	338	378	0.6	105.0	105.0	105.0	0.0	
342900	9342900	42,230	470	481	2.0	105.1	105.1	105.1	0.0	
343000	9343000	43,440	370	482	1.6	105.1	105.1	105.1	0.0	
343150	9343150	45,210	1,000	409	0.3	105.1	105.1	105.1	0.0	
343300	9343300	46,460	500	454	0.8	105.1	105.1	105.1	0.0	
346000	9346000	46,860	70	341	2.3	105.1	105.1	105.1	0.0	
346100	93461 00	46,940	20	*	*	105.8	105.8	105.8	0.0	
340100	9346200	40,340	638	296	0.9	105.6	105.6	105.6	0.0	

¹Feet above confluence with Lake Thonotosassa Tributary and Baker Canal

FEDERAL EMERGENCY MANAGEMENT AGENCY
HILLSBOROUGH COUNTY, FLORIDA
AND INCORPORATED AREAS

FLOODWAY DATA
FLOODING SOURCE: BAKER CREEK/ PEMBERTON CREEK/ MILL
CREEK

^{*}Data not available

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
346200	9354000	47,915	664	241	0.5	105.8	105.8	105.8	0.0
354000	9354000	48,580	356	138	0.5	105.8	105.8	105.8	0.0
354080	1354100	50,515	175	71	7.7	106.2	106.2	106.2	0.0
354100	9354180	50,565	112	91	0.7	111.3	111.3	111.3	0.0
354180	1354200	50,765	175	44	4.5	111.3	111.3	111.3	0.0
354200	1354300	50,877	208	40	5.7	111.7	111.7	111.7	0.0
354300	1354400	51,675	202	35	7.1	113.1	113.1	113.1	0.0
354400	9354700	51,819	200	32	0.8	114.8	114.8	114.8	0.0
354700		52,684				114.8	114.8	114.8	0.0

¹Feet above confluence with Lake Thonotosassa Tributary and Baker Canal

FEDERAL EMERGENCY MANAGEMENT AGENCY
HILLSBOROUGH COUNTY, FLORIDA
AND INCORPORATED AREAS

FLOODWAY DATA
FLOODING SOURCE: BAKER CREEK/ PEMBERTON CREEK/ MILL
CREEK

	LOCATION			FLOODWAY	(1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
605750	9670000	0	1,008	1,540	1.72	37.0	37.0	37.2	0.2
670000	9670050	6,768	361	1,280	1.72	45.1	45.1	45.1	0.0
670050	1670100	8,130	300	1,020	6.62	47.1	47.1	47.1	0.0
670100	9670150	8,242	165	708	2.36	48.4	48.4	48.4	0.0
670150	9670150	10,271	116	705	1.9	51.3	51.3	51.3	0.0
670151		12,797	192	705 705	1.38	53.9	53.9	54.2	0.3
670200	9670200	14,333	160			56.8	56.8	56.8	0.0
670250	9670250 9670350	14,851	323	705 694	1.47 1.83	57.2	57.2	57.2	0.0
670350	6670400	16,820	305	333	0.0	61.2	61.2	61.2	0.0
670400		19,488	298	230	0.0	62.3	62.3	62.3	0.0
670450	9670450 1 670500	20,378	298	230 767	6.24	62.3	62.3	62.3	0.0
670500	1 070000	20,403	290	707	0.24	63.0	63.0	63.0	0.0

¹Feet above confluence with Hillsborough River

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

FLOODING SOURCE: BASSETT BRANCH

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
810840 816040	9816040 9816045	0 2,646	211 211	848 89	3.53 10.12	31.2 35.1	31.2 35.1	31.9 35.1	0.7 0.0
816045	9816050	2,728	211	634	1.94	37.9	37.9	37.9	0.0
816050 816060	9816060	4,154 6,776	70	307	1.87	40.4 52.2	40.4 52.2	40.4 52.2	0.0

¹Feet above confluence with Bullfrog Creek

-	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA
	HILLSBOROUGH COUNTY, FLORIDA	
23	AND INCORPORATED AREAS	FLOODING SOURCE: BIG BEND

	LOCATION			FLOODWAY	<u>'</u>	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
606300	9680000	0	1,874	7,070	1.77	49.0	49.0	49.3	0.3
680000	9680010	1,682	1,499	7,070	1.77	49.0	49.0	49.4	0.4
680010	9680020	2,798	415	7,040	3.87	49.1	49.1	49.5	0.4
680020	9680020	5,026	98	7,040	6.62	49.3	49.3	49.8	0.5
680030	9680040	5,144	405	7,060	2.66	49.4	49.4	49.9	0.5
680040	9680050	6,366	405	7,080	3.29	49.4	49.4	49.9	0.5
680050	9680075	9,504	367	7,040	3.63	50.9	50.9	51.3	0.4
680075	9680100	11,256	407	7,040	4.76	52.5	52.5	52.9	0.4
680100	9680110	13,087	360	6,850	11.73	58.0	58.0	58.0	0.0
680110	9680150	13,690	530	6,850	3.46	58.3	58.3	58.3	0.0
680150	9680200	17,272	646	6,720	2.78	63.6	63.6	63.9	0.3
680200	9680250	20,426	898	6,650	3.06	65.4	65.4	65.8	0.4
680250	9680300	21,362	645	6,520	4.15	65.8	65.8	66.2	0.4

¹Feet above confluence with Hillsborough River

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

	LOCATION			FLOODWAY	<u>′</u>	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
680300	0000050	22,884	0.45	C 420	F 54	66.3	66.3	66.9	0.6
680350	9680350	23,416	645	6,430	5.51	66.8	66.8	67.4	0.6
680355	9680355	24,257	516	6,310	4.65	68.7	68.7	69.2	0.5
680360	9680360	25,603	706	6,310	4.55	71.5	71.5	71.9	0.4
680365	9680365	27,581	706	6,310	5.1	73.9	73.9	74.3	0.4
680370	9680370	29,057	706	6,310	4.78	76.4	76.4	76.7	0.3
	9680375		393	6,310	2.76				
680375	9680380	30,750	544	6,310	5.48	76.5	76.5	76.9	0.4
680380	1680390	31,679	300	865	5.7	78.1	78.1	78.3	0.2
680390	1680400	31,857	305	370	5.08	79.0	79.0	79.1	0.1
680400	9680450	31,932	67	6,220	9.98	79.1	79.1	79.4	0.3
680450	9680500	33,241	95	6,070	6.44	80.3	80.3	80.7	0.4
680500	9680520	36,662	290	5,910	5.29	82.1	82.1	82.1	0.0
680520		38,512		,		83.1	83.1	83.1	0.0
	9680540		713	5,520	4.35				

¹Feet above confluence with Hillsborough River

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

	LOCATION			FLOODWAY	<u> </u>	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)				
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
680540	9680550	41,431	990	5,520	3.72	86.2	86.2	86.6	0.4	
680550	9680600	41,981	707	5,320	5.58	86.9	86.9	87.3	0.4	
680600		42,846		,		87.6	87.6	88.2	0.6	
680650	9680650	45,730	1,080	2,160	0.88	88.0	88.0	88.3	0.3	
680660	9680660	47,228	335	2,000	2.51	90.2	90.2	90.2	0.0	
680670	9680670	47,372	58	2,000	4.86	90.4	90.4	90.4	0.0	
680680	9680680	48,115	505	2,000	2.1	90.9	90.9	90.9	0.0	
680700	9680700	50,981	607	2,000	2.16	93.3	93.3	93.3	0.0	
680725	9680725	51,951	445	1,660	2.37	93.8	93.8	93.9	0.1	
680750	9680750	53,762	457	1,670	1.76	94.3	94.3	94.4	0.1	
680760	9680760	54,759	419	1,540	2.16	95.1	95.1	95.1	0.0	
680770	9680770	55,417	245	1,540	2.81	95.6	95.6	96.1	0.5	
680780	9680780	55,563	92	1,540	5.23	96.2	96.2	96.5	0.3	
	9680790		131	1,540	3.73					

¹Feet above confluence with Hillsborough River

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
680790	9680800	55,807	170	1.540	2.82	96.5	96.5	96.9	0.4
680800		57,076		1,540		97.9	97.9	98.3	0.4
680810	9680810	58,077	404	1,270	1.6	98.4	98.4	98.9	0.5
680830	9680830	60,209	377	1,270	1.7	99.8	99.8	100.0	0.2
680850	9680850	61,033	89	1,270	4.35	101.3	101.3	101.8	0.5
680852	9680852	61,078	130	450	8.57	101.5	101.5	101.6	0.1
680860	9680860	61,677	153	1,270	3.08	102.5	102.5	102.7	0.2
	9680862		448	1,150	4.11				
680862	9680865	61,734	266	1,150	1.87	102.5	102.5	102.7	0.2
680865	9680870	62,297	284	1,150	1.05	104.4	104.4	104.6	0.2
680870	9680885	64,364	770	1,150	0.48	104.6	104.6	104.7	0.1
680885	9680890	65,224	282	1,150	1.66	104.6	104.6	104.7	0.1
680890	9680900	65,870	170	439	8.61	104.7	104.7	104.8	0.1
680900	9680940	65,951	83	747	2.98	105.6	105.6	105.6	0.0

¹Feet above confluence with Hillsborough River

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
680940	9680950	66,458	85	92.4	4.99	106.4	106.4	106.5	0.1
680950	9680955	66,506	90	747	4.57	106.6	106.6	106.6	0.0
680955	9680958	67,482	88	85.8	6.76	107.7	107.7	107.7	0.0
680958	9680960	68,732	242	608	0.43	108.5	108.5	108.7	0.2
680960	9680965	68,896	288	609	1.53	108.6	108.6	108.7	0.1
680965		70,766				108.8	108.8	109.0	0.2

¹Feet above confluence with Hillsborough River

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODING SOURCE: BLACKWATER CREEK

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
490000	1490070	1,898	286	484	5.3	27.4	27.4	27.7	0.3
490070	9490110	5,188	168	1,270	1.7	30.9	30.9	31.9	1.0
490110		7,438	168	•		31.7	31.7	32.6	0.9
490240	9490240	8,908	160	1,240	1.5 1.7	32.5	32.5	33.5	1.0
490250	9490250	11,213		1,180		34.2	34.2	34.7	0.5
490290	9490290 9490370	14,363	160 262	710 422	1.3 0.8	35.6	35.6	36.3	0.7
490370	7490420	16,513	333	0	V.6 *	37.0	37.0	37.0	0.0
490420	7490420	16,813	402	291	*	39.2	39.2	39.2	0.0
490430	7490430	20,716	402	291		42.1	42.1	42.1	0.0

¹Feet above county boundary

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODING SOURCE: BROOKER CREEK

^{*}Data not available

	LOCATION			FLOODWAY	(1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
420690	9440000	0	378	2,550	2.58	25.0	24.8 ²	25.1	0.3
440000		2,460				26.3	26.3	26.4	0.1
440010	9440010	4,280	396	2,560	2.2	28.0	28.0	28.0	0.0
440020	9440020	4,410		2,560	5.37	28.1	28.1	28.2	0.1
440030	9440030	5,250	580	2,480	3.61	30.5	30.5	30.6	0.1
440040	9440040	6,315	504	2,480	2.55	32.0	32.0	32.0	0.0
440050	9440050	7,590	444	2,480	1.87	32.5	32.5	32.8	0.3
440060	440060	7,661	358	2,480	2.60	38.1	38.1	38.1	0.0
440070	9440070	9,195	358	2,480	3.30	38.8	38.8	39.1	0.3
440080	9440080	10,560	210	2,430	2.48	39.3	39.3	39.7	0.4
440090	9440090	11,395	196	2,230	2.38	39.7	39.7	40.0	0.3
440100	440100	11,487	130	2,230	3.00	39.8	39.8	39.9	0.1
440110	9440110	12,785	126	2,230	2.88	40.5	40.5	40.6	0.1
	440120	·	220	2,220	2.00				

¹Feet above confluence with Rocky Branch

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODING SOURCE: BRUSHY CREEK

²Elevation does not consider maximum water-surface elevation at junction

^{*}Data not available

	LOCATION			FLOODWAY	1	1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
440120	9440130	13,070	330	2,220	5.1	40.8	40.8	40.9	0.1
440130		15,505				41.5	41.5	41.5	0.0
440140	9440140	15,575	88	2,220	3.79	41.5	41.5	41.7	0.2
440150	9440150	17,475	262	2,170	1.52	42.3	42.3	42.4	0.1
440155	9440155	18,280	299	1,950	1.72	43.1	43.1	43.1	0.0
440160	9440160	19,568	225	1,820	1.8	44.1	44.1	44.1	0.0
440170	9440170	21,099	84	1,380	2.81	44.2	44.2	44.2	0.0
	9440180		242	1,280	1.67				
440180	9440190	21,915	162	1,270	2.18	44.8	44.8	44.9	0.0
440190	9440200	23,267	130	922	2.70	46.6	46.6	46.6	0.0
440200	9440210	25,082	102	678	2.62	47.6	47.6	47.8	0.2
440210	440220	25,976	86	204	4.96	48.0	48.0	48.4	0.4
440220	9440230	26,051	85	689	1.36	48.6	48.6	48.8	0.2
440230	9440240	27,876	41	1,350	6.09	48.9	48.9	49.1	0.2

¹Feet above confluence with Rocky Branch

ΤAI	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA			
BLE	HILLSBOROUGH COUNTY, FLORIDA				
23	AND INCORPORATED AREAS	FLOODING SOURCE: BRUSHY CREEK			

	LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
440240	9440250	29,627	*	91.2	5.83	49.1	49.1	49.1	0.0
440250		29,680	00			50.5	50.5	50.5	0.0
440260	9440260	31,371	60	211	1.6	51.1	51.1	51.1	0.0
440270	9440270	31,435	*	90.8	5.56	52.3	52.3	52.4	0.1
440280	9440280	32,833	50	220	1.5	52.9	52.9	53.0	0.1
440290	9440290	32,896	*	89.7	3.62	53.5	53.5	53.6	0.1
440300	9440300	34,246	21	176	1.72	53.6	53.6	53.6	0.0
440310	9440310	34,329	*	87.8	1.86	53.7	53.7	53.7	0.0
440320	9440320	35,151	74	175	1.16	53.7	53.7	53.8	0.1
440330	9440330		9	108	2.4		53.9	53.9	0.0
	9440340	35,299	65	108	*	53.9			
440340	9440350	35,380	90	108	2.5	54.0	54.0	54.1	0.1
440350	9440360	35,775	35	108	3.4	54.2	54.2	54.3	0.1
440360	9440367	35,855	191	154	2.7	54.2	54.2	54.3	0.1
440367		36,672				54.2	54.2	54.3	0.1

¹Feet above confluence with Rocky Branch

FEDERAL EMERGENCY MANAGEMENT AGENCY
HILLSBOROUGH COUNTY, FLORIDA
AND INCORPORATED AREAS

FLOODING SOURCE: BRUSHY CREEK

^{*}Data not available

	LOCATION		FLOODWAY 1% ANNU			AL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
440080	9442000	0	82	258	0.9	39.3	39.3	39.7	0.4
442000	9442010	1,054	50	251	1.3	39.5	39.5	39.5	0.0
442010	9442020	3,951	50	66.4	5.6	44.5	44.5	44.8	0.3
442020	9442030	4,012	74	198	0.8	44.7	44.7	44.7	0.0
442030	9442040	5,803	*	210	5.2	45.1	45.1	45.3	0.2
442040	9442050	5,927	90	361	0.9	45.7	45.7	45.8	0.1
442050	9442055	8,609	20	77.9	0.9	45.7	45.7	46.4	0.7
442055	9442060	9,967	20	77.9	4.9	45.8	45.8	46.4	0.6
442060	9442070	10,766	20	79.6	5.0	45.8	45.8	46.4	0.6
442070	9442080	10,916	26	125	1.4	49.6	49.6	49.6	0.0
442080	9442090	11,531	22	51.8	4.1	49.7	49.7	49.7	0.0
442090	9442100	11,557	22	111	1.5	50.2	50.2	50.2	0.0
442100	9442110	12,274	22	37.2	5.1	50.7	50.7	50.7	0.0
442110	· · · · · · ·	12,329		-		51.7	51.7	51.4	0.0

¹Feet above confluence with Brushy Creek

FEDERAL EMERGENCY MANAGEMENT AGENCY

HILLSBOROUGH COUNTY, FLORIDA

AND INCORPORATED AREAS

FLOODWAY DATA

FLOODING SOURCE: BRUSHY CREEK BRANCH 2

^{*}Data not available

LOCATION			FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
JUNCTION NUMBER	CONDUIT NUMBER	DISTANCE ¹	WIDTH (FEET)	PEAK FLOW	VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
440190	84450000	0	87	248	2.0	46.6	46.6	46.6	0.0
445000		323	60			47.0	47.0	47.0	0.0
445010	1445010	527		37.4	7.51	48.9	48.9	48.9	0.0
445020	9445020	2,704	16	428	2.95	49.3	49.3	49.3	0.0
445030	1445030	2,786	16	50.1	7.15	50.9	50.9	50.9	0.0

¹Feet above confluence with Brushy Creek

ΤA	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA				
l BE	HILLSBOROUGH COUNTY, FLORIDA					
Ŋ	THEE OBORTOOTH GOOTH 1,1 EORIDA	FLOODING SOURCE: BRUSHY CREEK TRIBUTARY 1				
ω	AND INCORPORATED AREAS	1 LOODING GOORGE, BROOM OREER TRIBOTART I				