## **TECHNICAL MEMORANDUM**

## EAST-WEST ROAD CONCEPT UPDATE STUDY

**Prepared For:** 

City of Tampa, Florida

Prepared By:





**April 2015** 

## TABLE OF CONTENTS

| Secti | <u>tion</u>                                   | <u>Page</u> |
|-------|-----------------------------------------------|-------------|
| 1.0   | INTRODUCTION                                  | 1-1         |
|       | 1.1 Project Location and Limits               | 1-1         |
| 2.0   | PROJECT TRAFFIC FORECASTS                     | 2-1         |
|       | 2.1 Analysis Year                             | 2-1         |
|       | 2.2 Travel Demand Modeling                    |             |
|       | Alternative 1                                 | 2-1         |
|       | Alternative 2                                 |             |
|       | Alternative 3                                 |             |
|       | Alternative 4                                 |             |
|       | 2.3 Future Year TRAFFIC Volumes               | 2-2         |
| 3.0   | FUTURE CONDITIONS TRAFFIC OPERATIONS ANALYSIS | 3-1         |
|       | 3.1 Future Build Operations Analysis          | 3-1         |
| 4.0   | CONCEPTUAL ROADWAY PLAN                       | 4-1         |
| 5.0   | PRELIMINARY COST ESTIMATES                    | 5-1         |
| 6.0   | CONSISTENCY WITH FHWA & FDOT STANDARDS & POLI | CIES6-1     |
| 7.0   | FEASIBILITY REVIEW                            | 7-1         |
|       | What's Next?                                  | 7-4         |

## **LIST OF APPENDICES**

Travel Demand Model & Annual Growth Calculations

Design Year (2040) HCS Analyses

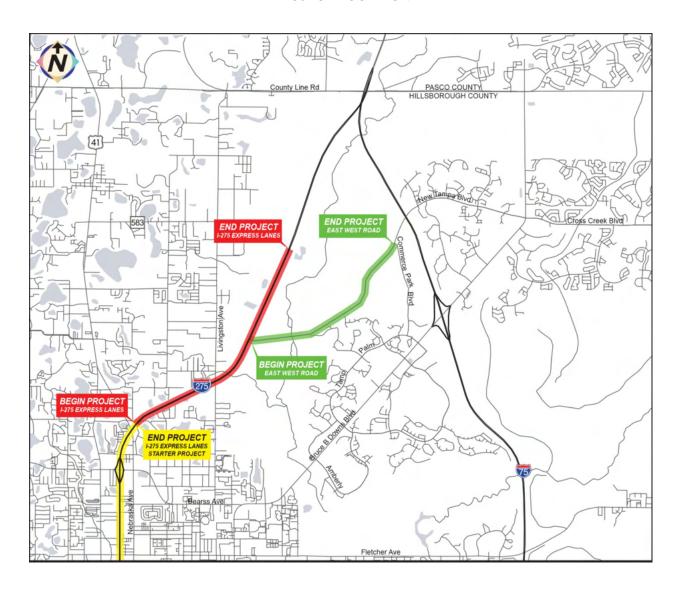
Concept Plan Sheets

Appendix A Appendix B

Appendix C

| Appe        | endix D Preliminary Cost Estimates                           |             |
|-------------|--------------------------------------------------------------|-------------|
|             | LIST OF TABLES                                               |             |
| <u>Tabl</u> | <u>e</u>                                                     | <u>Page</u> |
| 3-1         | Design Year (2040) Levels of Service                         | 3-3         |
| 5-1         | Preliminary Cost Estimates                                   | 5-1         |
|             | LIST OF FIGURES                                              |             |
| Figu        | <u>re</u>                                                    | <u>Page</u> |
| 1-1         | Project Location                                             | 1-1         |
| 2-1         | Design Year (2040) Annual Average Daily Traffic (AADT)       | 2-3         |
| 2-2         | Design Year (2040) Directional Design Hourly Volumes (DDHVs) | 2-4         |
| 3-1         | Design Year (2040) Number of Lanes                           | 3-2         |
| 4-1         | East-West Road Preferred Alternative                         |             |
| 7-1         | Potential Tolling Facilities in North Tampa                  | 7-2         |

# Section 1.0 INTRODUCTION


The City of Tampa (City) is conducting a Concept Update Study for a proposed East-West Road, which could operate with express lanes between Commerce Park Boulevard/New Tampa Boulevard and the Starter Projects (Starter Projects) that support the ultimate Tampa Bay Express (TBX) Master Plan on Interstate 275 (I-275), as shown in **Figure 1-1**. The purpose of this *Technical Memorandum* is to document the findings of the feasibility assessment, including future traffic conditions within the study area.

## 1.1 PROJECT LOCATION AND LIMITS

The East-West Road corridor is proposed to be a four-lane limited access toll facility (two-lanes in each direction) on new alignment in the New Tampa area of northeastern Hillsborough County, Florida. The project includes a proposed connection to a potential I-275 Starter Project between the I-275/Bearss Avenue interchange and the Interstate 75 (I-75)/I-275 junction. Just east of I-275, East-West Road is proposed to transition from four to two lanes (one in each direction) where it continues on the I-275 express lanes ramps to/from the south.

As illustrated on **Figure 1-1**, the project limits of the proposed East-West Road corridor span from the proposed connection to the I-275 Starter Projects to Commerce Park Boulevard/New Tampa Boulevard. In addition, the project includes an extension of the express lanes on I-275 from the northern terminus of the Starter Project to north of the proposed East-West Road connection with I-275.

FIGURE 1-1 PROJECT LOCATION



# Section 2.0 PROJECT TRAFFIC FORECASTS

This section describes the travel demand modeling procedure as well as the development of future year Annual Average Daily Traffic (AADT) volumes and Directional Design Hourly Volumes (DDHVs) for the East-West Road corridor.

## 2.1 ANALYSIS YEAR

A Design Year of 2040 was assumed for the project traffic forecasts and analysis.

## 2.2 TRAVEL DEMAND MODELING

The 2035 Tampa Bay Regional Planning Model for Managed Lanes (TBRPM-ML) endorsed by the Florida Department of Transportation (FDOT) District Seven Systems Planning Office was used in development of traffic projections for this study. The TBRPM-ML is based on the Florida Standard Urban Transportation Modeling Structure (FSUTMS) and is recognized by the Tampa Bay Area Metropolitan Planning Organizations (MPOs) as an accepted travel demand forecasting tool. The ultimate roadway network used reflects the latest available adopted Cost Affordable Long Range Transportation Plans (LRTPs) for all counties in the region, as well as the I-275 Starter Projects. The model was reviewed to ensure that it accurately reflects the timing of improvements to the surrounding roadway network. In addition, the socioeconomic (SE) data was reviewed to ensure that the latest approved development totals, including those specifically located within the New Tampa area, are represented.

For the a.m. and p.m. peak periods, as well as the off-peak periods, the "variable time of day" tolls from the TBX Master Plan were used. Multiple alternatives were initially modeled for the proposed East-West Road and connection with I-275 to preliminarily evaluate the traffic demand generated in 2035. A brief description of each alternative is as follows:

#### ALTERNATIVE 1

East-West Road and interchange with express lane (toll) ramps to/from I-275 south. New express lanes join the I-275 Starter Project north of Bearss Avenue. This alternative generates 18,100 vehicles per day (vpd) in 2035 on the East-West Road corridor.

#### ALTERNATIVE 2

Addition of express lane (toll) ramps to/from I-275 north to the Alternative 1 model. This alternative generates 300 vpd more than Alternative 1 in 2035 on the East-West Road corridor for total of 18,400 vpd.

#### **ALTERNATIVE 3**

Addition of express lanes (toll) on I-275 through the East-West Road interchange to south of the I-75/I-275 junction to the Alternative 1 model. This alternative generates 12,600 vpd in 2035 on the new I-275 toll facility north of the East-West Road interchange. The total I-275 toll facility traffic north of Bearss Avenue is 31,700 vpd in 2035.

#### ALTERNATIVE 4

Addition of express lane (toll) ramps to/from I-275 general use lanes at a location north of Bearss Avenue. This alternative generates 8,500 vpd in 2035 on I-275 with total I-275 toll facility traffic north of Bearss Avenue at 34,800 vpd in 2035. East West Road generates 23,400 vpd and 11,400 vpd on I-275 toll facility north of East West Road.

The traffic projections and conceptual roadway plans for all alternatives were presented to the City of Tampa. Based on the total volume of potential toll traffic projected on the East-West Road facilities in 2035, Alternative 4 was approved by the City Project Manager as the preferred alternative for further analysis.

## 2.3 FUTURE YEAR TRAFFIC VOLUMES

The Peak Season Weekday Average Daily Traffic (PSWADT) volumes obtained from the 2035 TBRPM-ML model were converted to the respective AADT volumes through multiplication by a factor of 0.95, which is the Model Output Conversion Factor (MOCF) used in the TBX Master Plan. The DDHVs were also obtained from the TBRPM-ML, which is a "time of day" model and provides forecasts for the a.m. and p.m. peak periods. The travel demand model output and the annual growth calculations are documented in **Appendix A**. The AADT volumes and DDHVs for the Design Year (2040) are provided on **Figure 2-1** and **Figure 2-2**.

FIGURE 2-1 DESIGN YEAR (2040) ANNUAL AVERAGE DAILY TRAFFIC (AADT)

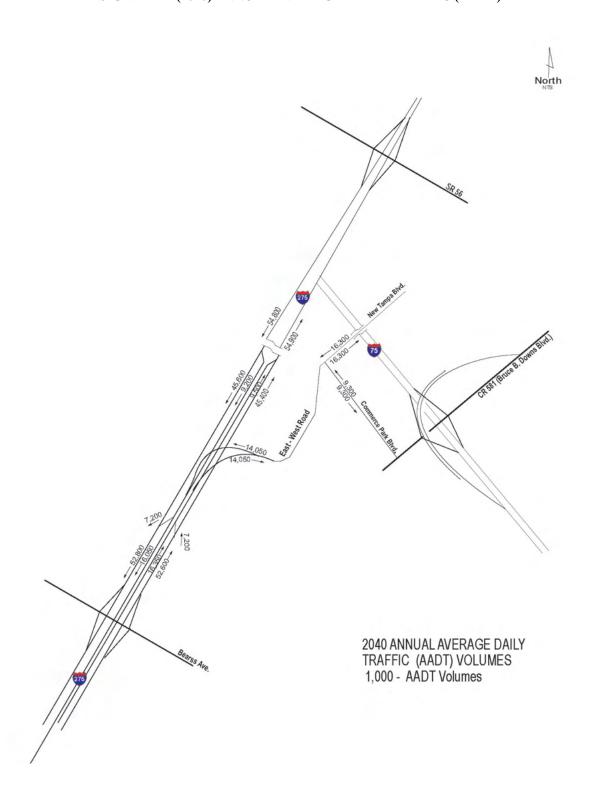
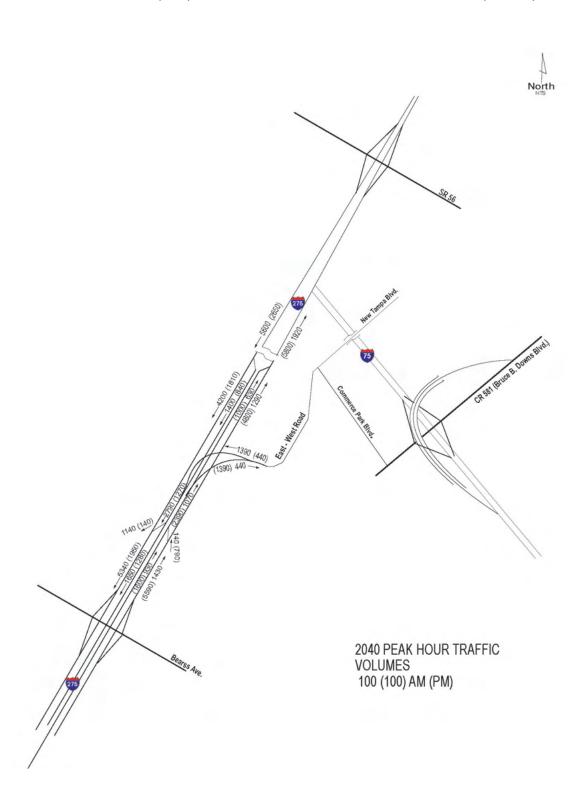




FIGURE 2-2 DESIGN YEAR (2040) DIRECTIONAL DESIGN HOURLY VOLUMES (DDHVS)



## Section 3.0 FUTURE CONDITIONS TRAFFIC OPERATIONS ANALYSIS

A future conditions traffic operations analysis was conducted to evaluate the performance of the roadways within the study area. The future conditions analysis was performed using the Highway Capacity Software (HCS) 2010, Version 6.5.

## 3.1 FUTURE BUILD OPERATIONS ANALYSIS

The number of lanes used in the future analysis of the East-West Road from Commerce Park Boulevard/New Tampa Boulevard and I-275 from Bearss Avenue to the I-75/I-275 junction are provided on **Figure 3-1**. This geometry and the DDHVs provided on Figure 2-2 for the a.m. and p.m. peak period were input into the HCS and the level of service was determined. The levels of service for highways, established by the Transportation Research Board's Levels of Service criteria, range from LOS A through LOS F, where LOS A is the best level of service and LOS F is the worst traffic conditions. The projected levels of service and the associated density in the Design Year (2040) for the East-West Road and the I-275 general use and express lanes are summarized in **Table 3-1**.

In the Design Year (2040), the East-West Road is anticipated to operate at LOS B or better in the a.m. and p.m. peak periods. The proposed express lanes on I-275 are anticipated to operate at LOS D or better with the addition of the East-West Road and interchange. North of the proposed express lane terminus, the general use lanes on I-275 are anticipated to operate at LOS E in the northbound direction during the p.m. peak hour. The Design Year (2040) HCS analyses results are provided in **Appendix B**.

FIGURE 3-1 DESIGN YEAR (2040) NUMBER OF LANES

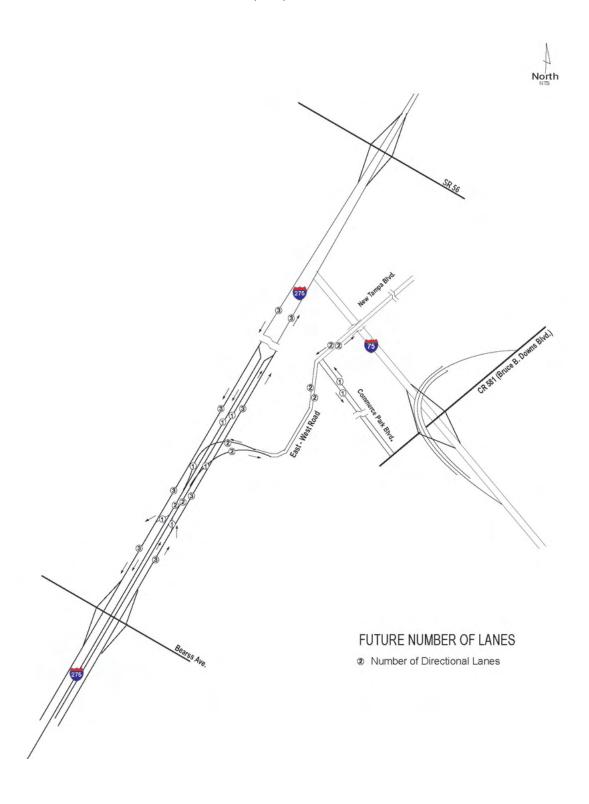



TABLE 3-1 DESIGN YEAR (2040) LEVELS OF SERVICE

|                      |                                         |            |                      | AM Pea | ık Hour                 |       | PM Peak Hour         |     |                       |        |
|----------------------|-----------------------------------------|------------|----------------------|--------|-------------------------|-------|----------------------|-----|-----------------------|--------|
|                      |                                         |            | Main                 | line   | Ram<br>Merge/Di<br>Area | verge | Mainli               | ne  | Ran<br>Merge/I<br>Arc | iverge |
| Roadway              | Location                                | Direction  | Density <sup>1</sup> | LOS    | Density <sup>1</sup>    | LOS   | Density <sup>1</sup> | LOS | Density <sup>1</sup>  | LOS    |
| East-West            | I-275 to Commerce Park Blvd./New Tampa  | Eastbound  | 4.0                  | A      | -                       | -     | 12.6                 | В   | -                     | -      |
| Road                 | Blvd.                                   | Westbound  | 12.6                 | В      | -                       | -     | 4.0                  | A   | -                     | -      |
|                      | Bearss Ave. to Express Slip Ramp        |            | 7.5                  | A      | -                       | -     | 33.4                 | D   | -                     | -      |
|                      | Express Slip Ramp                       |            | -                    | -      | 8.5                     | A     | -                    | -   | 34.7                  | D      |
|                      | Express Slip Ramp to Express Terminus   | Northbound | 6.8                  | A      | -                       | -     | 26.6                 | D   | -                     | -      |
|                      | Express Terminus Ramp                   |            | -                    | -      | 11.2                    | В     | -                    | -   | 33.7                  | D      |
| I-275<br>General Use | Express Terminus to I-75/I-275 Junction |            | 10.1                 | A      | -                       | -     | 35.6                 | Е   | -                     | -      |
| Lanes                | I-75/I-275 Junction to Express Begin    |            | 33.5                 | D      | -                       | -     | 13.9                 | В   | -                     | -      |
|                      | Express Begin Ramp                      |            | -                    | -      | 34.2                    | D     | -                    | -   | 17.9                  | В      |
|                      | Express Begin to Express Slip Ramp      | Southbound | 22.5                 | С      | -                       | -     | 9.5                  | A   | -                     | -      |
|                      | Express Slip Ramp                       |            | -                    | -      | 34.4                    | D     | -                    | -   | 12.6                  | В      |
|                      | Express Slip Ramp to Bearss Ave.        |            | 31.1                 | D      | -                       | -     | 10.2                 | A   | -                     | -      |
|                      | Bearss Ave. to Express Slip Ramp        |            | 14.4                 | В      | -                       | -     | 26.1                 | D   | -                     | -      |
|                      | Express Slip Ramp to East-West Off-Ramp | Northbound | 8.3                  | A      | -                       | -     | 18.6                 | C   | -                     | -      |
| I-275                | East-West Off-Ramp to Express Terminus  |            | 9.8                  | A      | -                       | -     | 15.5                 | В   | -                     | -      |
| Express<br>Lanes     | Express Begin to East-West On-Ramp      |            | 21.6                 | С      | -                       | -     | 13.0                 | В   | -                     | -      |
|                      | East-West On-Ramp to Express Slip Ramp  | Southbound | 22.0                 | С      | -                       | -     | 9.9                  | A   | -                     | -      |
|                      | Express Slip Ramp to Bearss Ave.        |            | 27.2                 | D      | -                       | -     | 20.0                 | C   | -                     | -      |

<sup>1</sup> Density = passenger cars per mile per lane

# Section 4.0 CONCEPTUAL ROADWAY PLAN

Preliminary engineering criteria used to develop the project are consistent with the requirements of the *Plans Preparation Manual*, FDOT (January 2014) and *A Policy on Geometric Design of Highways and Streets*, AASHTO (2004). In addition, the criteria applied for the I-275 express lanes, and separation of those lanes from the I-275 general use lanes, are consistent with current practices included in the *Draft TBX Master Plan* (January 2015).

**Figure 4-1** provides the conceptual roadway plan for the East-West Road preferred alternative. Detailed plan sheets are provided in **Appendix C**.

## FIGURE 4-1 EAST-WEST ROAD PREFERRED ALTERNATIVE





# Section 5.0 PRELIMINARY COST ESTIMATES

Preliminary estimates were developed for the construction costs associated with the preferred Alternative 4 for the East-West Road, interchange at I-275 and additional express lanes on I-275. These costs include Preliminary Engineering (PE)/Design; Mitigation; Permitting; Change Order Contingency; and Construction, Engineering, and Inspection (CEI). A summary of the conceptual cost estimates is provided in **Table 5-1**. For a detailed breakdown of the cost estimate, refer to **Appendix D**. All East-West Road and associated improvements are in current dollars without escalation to the construction year.

TABLE 5-1 PRELIMINARY COST ESTIMATES

|                                             |                     | C            | Construction ( | Cost Summar      | y          |                                | Total                |  |  |
|---------------------------------------------|---------------------|--------------|----------------|------------------|------------|--------------------------------|----------------------|--|--|
| Roadway                                     | Construction        | PE/Design    | CEI            | Mitigation       | Permitting | Change<br>Order<br>Contingency | Construction<br>Cost |  |  |
| East-West<br>Road &<br>Interchange<br>Ramps | \$87,222,000        | \$10,466,640 | \$1,569,996    | \$3,132,570      | \$62,651   | \$4,517,729                    | \$106,971,586        |  |  |
| I-275<br>Express<br>Lanes                   | \$41,396,000        | \$4,967,520  | \$6,209,400    | \$0 <sup>1</sup> | \$827,920  | \$2,069,800                    | \$55,470,640         |  |  |
|                                             | PROJECT TOTAL COST: |              |                |                  |            |                                |                      |  |  |

All mitigation costs for the project are included in the estimate for the East-West Roadway & Interchange Ramps

# Section 6.0 CONSISTENCY WITH FHWA & FDOT STANDARDS & POLICIES

The Federal Highway Administration (FHWA) regulates the addition and modification of access points along the interstate system and, as such, has eight requirements that must be met before a new connection is approved. The following summarizes how the proposed interchange of East-West Road and the Interstate 275 (I-275) Express Lanes will satisfy each requirement.

The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).

The need for a network of managed/express lanes in the Tampa Bay region has previously been established by FDOT. A traffic analysis of existing conditions conducted as part of the TBX Master Plan established that the existing system (general use lanes on I-275 and the connecting roadway network) operate at or over capacity, even with improvements proposed in Hillsborough and Pasco Counties' LRTP. Further, there is no direct connection to I-275 from the New Tampa area and southern Pasco County.

As such, it has been determined through development of the TBX Master Plan and Hillsborough and Pasco Counties' LRTPs that all reasonable improvements have been explored and will not satisfactorily accommodate the design-year traffic demands served by the proposed East-West Road and interchange.

- The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).
  - Non-traditional transportation modes such as ramp metering, Travel Demand Management, and Mass Transit were considered as part of Hillsborough and Pasco Counties' LRTP processes and determined to be not sufficient to meet the travel demands that will be addressed by the proposed East-West Road and interchange.
- An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp

intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

As the access requested for the East-West Road is directly to the express lanes of I-275, the project is not anticipated to degrade the levels of service on the general use lanes of the interstate system. The proposed interchange of East-West Road and the I-275 express lanes is expected to relieve congestion and improve traffic operations at several critical locations in the study area, including the I-75/State Road 56 (SR 56) interchange, the CR 581 (Bruce B. Downs Boulevard)/I-75 interchange, and the section of I-75 south of SR 56. Motorists now accessing I-75 at CR 581 (Bruce B. Downs Boulevard) will be provided convenient access to I-275, which has lower traffic volumes and more available capacity than the parallel portion of I-75. Furthermore, the proposed interchange will enhance incident management capabilities by providing additional detour route options and enhance emergency management capabilities by increasing roadway capacity from the Strategic Intermodal System (SIS) and hurricane evaluation routes to the emergency evacuation centers located in the New Tampa area and southern Pasco County.

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).

The Build Alternative interchange configuration is proposed to access an extension of the I-275 express lanes via Commerce Park Boulevard/New Tampa Boulevard, which are County roadways. Traffic movements are proposed to/from the express lanes on I-275 south. Note that at this time, there are no plans to extend East-West Road west of I-275.

AASHTO recommends a minimum interchange spacing of 3.0 miles in rural areas and 1.0 mile in urban areas. Further, FDOT recommends a minimum spacing of 2.0 miles for urbanized areas and 3.0 miles for transitioning urbanized areas. The location of the

proposed I-275/East-West Road interchange is approximately 3.0 miles north of the I-275/Bearss Avenue interchange and approximately 5.9 miles south of the I-75/SR 56 interchange. As such, the proposed interchange spacing between adjacent interchanges exceeds design guidelines established by the FHWA and the FDOT.

The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.

The need for improved access to/from the New Tampa area and southern Pasco County has long been recognized by the Hillsborough and Pasco County MPO and the City of Tampa. The East-West Road is identified as an unfunded need in the Hillsborough County adopted 2035 LRTP and a potential cost feasible project (depending on the adopted investment scenario) in the 2040 LRTP currently being developed. The East-West Road is also proposed to be included on the latest *Future Transportation Network Map* as part of the Hillsborough County Comprehensive Plan Update.

In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).

The East-West Road and proposed connection to the I-275 express lanes will be incorporated into the TBX Master Plan at the appropriate stage of the project development process.

When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).

Approved and planned developments in the area have been integrated into the travel demand forecasting for this study. Several planned developments have integrated the proposed roadway into their site plans. In addition, Developments of Regional Impact (DRI) have been approved based upon the assumption that capacity provided by the proposed East-West Road will be available in the near future to mitigate traffic impacts

resulting from those developments. The East-West Road is also proposed to be included on the latest *Future Transportation Network Map* as part of the Hillsborough County Comprehensive Plan Update.

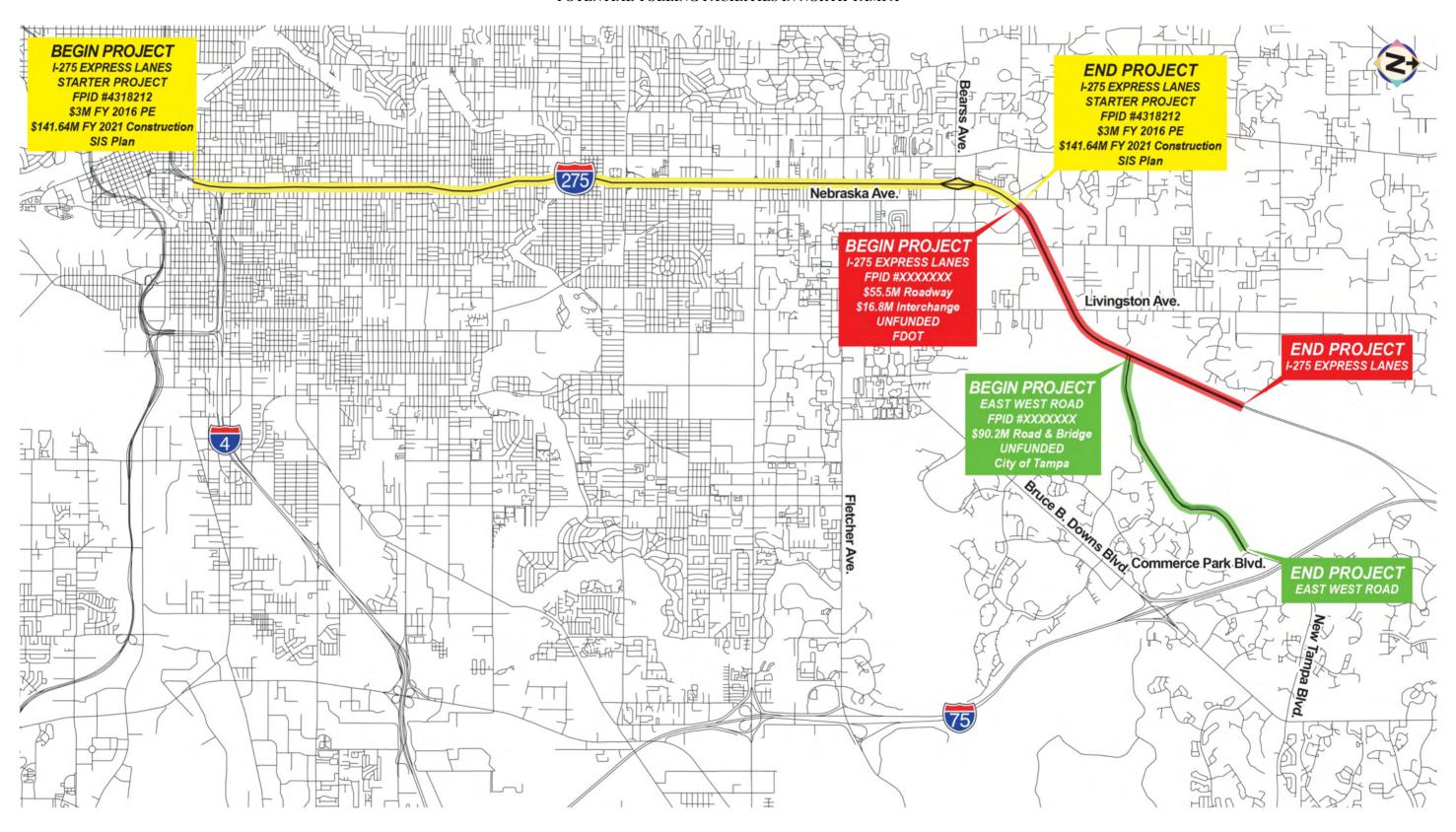
8 The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

A Project Development and Environment (PD&E) Study for the East-West Road and interchange with the I-275 Express Lanes will need to be prepared concurrent with an Interchange Justification Report (IJR). Any environmental impacts for the proposed roadway and interchange will need to be fully evaluated and documented during the PD&E Study following all procedures and requirements of the National Environmental Policy Act (NEPA).

## Section 7.0 FEASIBILITY REVIEW

After review of the four potential alternatives, Alternative 4 was approved by the City Project Manager as the preferred alternative for further analysis in this study based on the total volume of potential toll traffic projected on the East-West Road associated facilities. As stated previously in this report, this scenario is projected to generate approximately 28,100 to 32,600 vpd on the East-West Road toll facility and associated I-275 Express Lanes, which warrants the need for a four-lane roadway (two lanes in each direction) on the majority of the East-West Road and I-275 corridor. Based on the projected travel demand and number of lanes, the East-West Road is recommended for further evaluation as a potential Public Private Partnership (P3) project. **Figure 7-1** shows the three components of the potential new toll facilities in north Tampa.

As this study focused on the project's feasibility from a traffic demand perspective, an evaluation of potential toll revenues generated by the project will need to be documented in a Preliminary Toll Revenue Study. In addition, an FDOT PD&E/NEPA Study for the East-West Road and interchange with the I-275 express lanes will need to be prepared concurrent with an Interchange Justification Report (IJR). Note that Alternative 4 proposes a new connection to the interstate system and, therefore, constitutes a federal action through the IJR and NEPA process. As such, any environmental impacts for the proposed roadway and interchange will need to be fully evaluated and documented following all procedures and requirements of the NEPA process. The anticipated level of environmental documentation will be an Environmental Assessment (EA) and Finding of No Significant Impact (FONSI).


#### **FACTS**

- East West Road in Hillsborough Long Range Transportation Plan (Needs)
  - LRTP 2012-2025 Design \$6.75M
  - LRTP 2031-2040 Construction \$74.89M
  - Revenue Source: Local Sales Tax (if 2016 referendum approved)
- Tampa Bay Express (TBX) I-275 from Jefferson-Orange to North of Bearss Avenue Starter Project in FDOT SIS Plan #4318212
  - FY 2016 PE \$3M / FY 2021 Construction \$141.64M

## POSSIBLE ADVANCE AS P3

• TBX I-275 North FPID #4318212 –Jefferson/Orange Access East Side CBD (Funded)

FIGURE 7-1
POTENTIAL TOLLING FACILITIES IN NORTH TAMPA

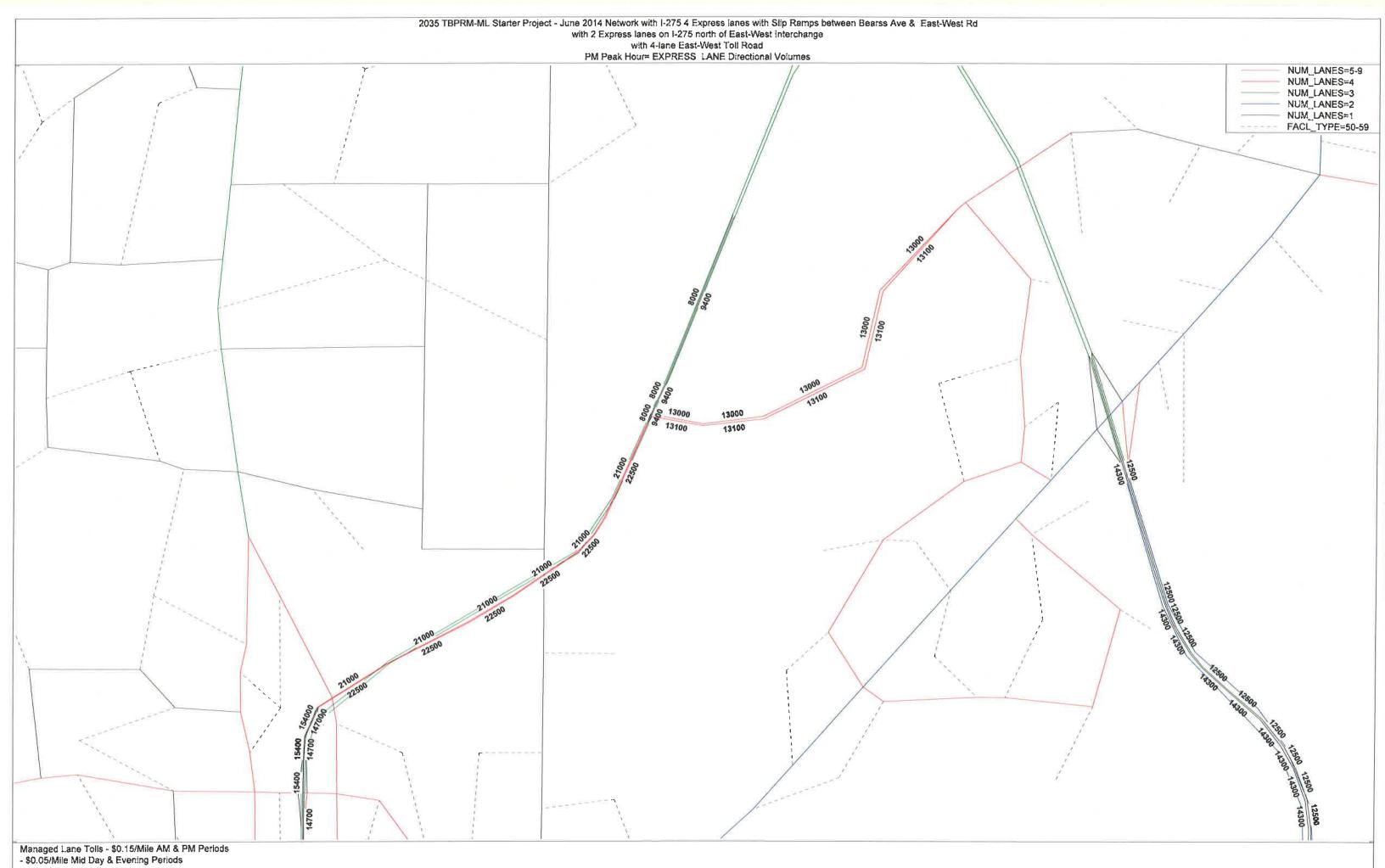


- TBX I-275 Extension north of Bearss Ave to East West Road Interchange (Unfunded)
- East West Road Commerce Park Blvd to I-275 TBX (Unfunded)

## FLORIDA DOT UNSOLICITED PROPOSAL - FLORIDA STATUTE 334.30

Public-private transportation facilities may advance projects programmed in the

- Adopted Five Year Work Program (FY2015-FY2020 or FY2016-FY2021) or
- Projects increasing transportation capacity and greater than \$500 million in the
- 10-year Strategic Intermodal Plan using funds provided by P3s or
- Private entities to be reimbursed from department funds for the project as programmed in the adopted work program.
- Florida DOT Unsolicited Proposal Process:
  - Proposers should begin conceptual discussions with the Project Finance Manager, (Leon Corbett) in the Office of the Comptroller, Project Finance Section to gain an understanding of program basics.
  - If proposal meets basic program requirements, proposers should continue conceptual discussions with the District/Turnpike to determine District/Turnpike interest.
  - If District/Turnpike is interested, the concept should receive executive direction (Secretary/Assistant Secretary/District Secretary) before proceeding further.
  - Central Office will determine if the project involves federal aid and/or is state-funded. District/Turnpike should request a Cash Availability Schedule from Central Office.
  - Proposer submits to the Project Finance Manager an Unsolicited Proposal with \$50,000 deposit. Proposal may be a brief concept statement. If acceptable and within Executive Direction, the Department begins 120-day advertisement period.
  - During the advertisement period no evaluation or analysis is performed on the proposal(s).
  - All proposals must be complete and sufficient for evaluation by the end of the advertisement period or will be rejected and returned.
  - At the end of the advertisement period, District/Turnpike and Central Office will evaluate the proposal(s) as may be appropriate and select Best Value Proposal for negotiation.


- If executive direction is to proceed, then award/execute contract with the final selected proposer.
- Project is produced by the District/Turnpike according to the negotiated procurement documents
- East West Road Commerce Park Blvd to I-275 TBX (Unfunded)
  - City/County 1% Sales Tax Initiative 2016 Referendum required (\$83.16M)
  - Seek Federal Transit Administration "Premium Transit" funding for "guideway"
  - Potential Tolls on City of Tampa East West Road dedicated to funding 2040 AADT 28,100

### WHAT'S NEXT?

City requests FDOT, Hillsborough County, Tampa Hillsborough Expressway Authority, and MPO to cooperate on funding the East West Road and TBX I-275 north extension to tie East West Road to TBX I-275. Potential funding scenarios to advance the project are:

- Seek FDOT \$55.5M SIS funds for new TBX extension from current programmed TBX project #4318212 (does not include #16.8M for East West Road/I-275 interchange)
- Seek FDOT to provide I-275 Interchange (\$16.8M) at East West Road as part of TBX extension north from current TBX project #4318212
- City and/or County funding \$23.81M "gap" in 2021-2025 (\$106.97M \$83.16 = \$23.81) assumes 2016 Hillsborough 1% Sales Tax already committed for \$83.16M without I-275 interchange
- FDOT/Florida Turnpike Alternative and THEA/P3 Alternative assumes transfer ownership of East West Road from City and becomes part of State Road system
- City of Tampa could reinitiate the LAP agreement with FDOT D7 to fund revised IJR and PD&E using basic information updated from 2009 East West Road shutdown. Possible use of FDOT funding for LAP and subsequent design/build or P3 funding.





cube

|               | SEGMENT      |         | SEGMEN     |        | SEGMEN    | T NO. 3 | Segmen    | t No. 4 | Segmen     | t No. 5 | TOTAL OF AL | L SEGMENTS |
|---------------|--------------|---------|------------|--------|-----------|---------|-----------|---------|------------|---------|-------------|------------|
|               | 1-275        | i       | CR 5       | 81     | CR 6      | 81      | Bearse    | Ave     | Livingte   | n Rd    |             |            |
| YEAR          | N. of Bears  | s Ave.  | South o    | f J-75 | North o   | t i-75  |           |         | South o    | 1-276   |             |            |
|               | Station #1   | 9-2001  | Station #1 | 0-5729 | Station # | 10-6730 | Station # | 10-0109 | \$tation # | 10-5700 |             |            |
|               | Counts       | Trend   | Counts     | Trend  | Counts    | Trend   | Counts    | Trend   |            |         | Counts      | Trend      |
| 1998          | 26,000       | 24,400  |            |        |           |         | 42,000    | 39,600  |            |         |             |            |
| 1999          | 30,000       | 26,600  |            |        |           |         | 42,500    | 40,600  |            |         |             |            |
| 2000          | 26,000       | 28,900  |            |        |           |         | 42,500    | 41,600  |            |         |             |            |
| 2001          | 24,000       | 31,100  |            |        |           |         | 40,000    | 42,500  |            |         |             |            |
| 2002          | 32,000       | 33,400  |            |        |           |         | 42,000    | 43,500  |            |         | 1           |            |
| 2003          | 36,000       | 35,600  |            |        |           |         | 42,500    | 44,500  |            |         |             |            |
| 2004          | 37,000       | 37,900  |            |        |           |         | 47,500    | 45,500  |            |         |             |            |
| 2005          | 40,000       | 40,100  |            |        |           |         | 52,500    | 46,400  |            |         |             |            |
| 2006          | 42,000       | 42,400  |            |        |           |         | 53,500    | 47,400  |            |         |             |            |
| 2007          | 55,500       | 44,600  |            |        |           |         | 48,500    | 48,400  |            |         |             |            |
| 2008          | 50,000       | 46,900  | 41,000     | 48,400 | 48,500    | 58,100  | 50,000    | 49,400  | 11,900     | 11,000  | 201,400     | 216,200    |
| 2009          | 52,000       | 49,100  | 54,000     | 49,100 | 67,500    | 60,100  | 48,000    | 50,400  | 12,000     | 13,000  | 233,500     | 220,400    |
| 2010          | 49000        | 51,400  | 53000      | 49,800 | 66500     | 62,200  | 48,000    | 51,300  | 12300      | 15,000  | 228,800     | 224,700    |
| 2011          | 51000        | 53,600  | 53000      | 50,500 | 66500     | 64,300  | 49,000    | 52,300  | 13000      | 17,000  | 232,500     | 228,900    |
| 2012          | 51000        | 55,900  | 54000      | 51,200 | 67500     | 66,400  | 49,500    | 53,300  | 13000      | 19,000  | 235,000     | 233,200    |
| 2013          | 58500        | 58,100  | 46000      | 52,000 | 63000     | 68,400  | 49,000    | 54,300  | 13000      | 21,100  | 229,500     | 237,400    |
| 2035          |              | 107,500 |            | 67,700 |           | 114,000 |           | 75,800  |            | 65,400  |             | 330,900    |
| 2040          |              | 118,800 |            | 71,200 |           | 124,400 |           | 80,700  |            | 75,400  |             | 352,100    |
| DOT TREND     |              | 3.86%   |            | 1.37%  |           | 3.03%   |           | 1.80%   |            | 9.54%   |             | 1.799      |
| 2013 - 2040)  |              | - 1     |            | - 1    |           |         |           |         |            |         |             |            |
|               |              | - 1     |            |        |           |         |           |         |            |         |             |            |
| BRPM-MLV24 L  | INEAR        | 5.39%   |            | 1.10%  |           | 1.25%   |           | 1.48%   |            |         |             | 2.31%      |
| ROJECTION (20 | 008 to 2035) | - 1     |            |        |           |         |           |         |            |         |             |            |
|               |              | - 1     |            |        |           |         |           |         |            |         |             |            |
|               |              | I       |            |        |           |         |           |         |            |         |             |            |
| VERAGE GROV   | WTH          | - 1     |            |        |           |         |           |         |            |         |             | 2.05%      |
|               |              | - 1     |            | - 1    |           |         |           |         |            |         |             |            |



## I-275 2040 AM-PM Peak Hour HCS Freeway Analysis

|                                                                                                                               | BASIC FR               | EEWAY SE         | GMENTS WORKSHE                                                                                                                                                     | ET                       |                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                           |                        |                  | Site Information                                                                                                                                                   |                          |                                                                                     |
| Analyst                                                                                                                       |                        |                  | Highway/Direction of Trav                                                                                                                                          | ei <i>I-275/</i> N       | IB                                                                                  |
| Agency or Company                                                                                                             | URS                    |                  | From/To                                                                                                                                                            |                          | Ave/Express Slip                                                                    |
| Date Performed<br>Analysis Time Period                                                                                        | 10/6/2014<br>AM        |                  | Jurisdiction<br>Analysis Year                                                                                                                                      | Ramp<br>Hillsboi<br>2040 | rough County                                                                        |
| Project Description East-                                                                                                     | West Rd                |                  |                                                                                                                                                                    |                          |                                                                                     |
| ▼ Oper.(LOS)                                                                                                                  |                        |                  | Des.(N)                                                                                                                                                            | □Pla                     | nning Data                                                                          |
| Flow Inputs                                                                                                                   |                        |                  |                                                                                                                                                                    |                          |                                                                                     |
| Volume, V<br>AADT                                                                                                             | 1430                   | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.92<br>3                |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                  |                        | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi         |                                                                                     |
| Calculate Flow Adjus                                                                                                          | tments                 |                  |                                                                                                                                                                    |                          |                                                                                     |
| fp                                                                                                                            | 1.00                   |                  | E <sub>R</sub>                                                                                                                                                     | 1.2                      |                                                                                     |
| E <sub>T</sub>                                                                                                                | 1,5                    |                  | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R -$                                                                                                                           | 1)] 0.985                |                                                                                     |
| Speed Inputs                                                                                                                  |                        |                  | Calc Speed Adj and                                                                                                                                                 | FFS                      |                                                                                     |
| Lane Width                                                                                                                    |                        | ft               |                                                                                                                                                                    |                          |                                                                                     |
| Rt-Side Lat. Clearance                                                                                                        |                        | ft               | f <sub>LW</sub>                                                                                                                                                    |                          | mph                                                                                 |
| Number of Lanes, N                                                                                                            | 3                      |                  | f <sub>LC</sub>                                                                                                                                                    |                          | mph                                                                                 |
| Total Ramp Density, TRD                                                                                                       |                        | ramps/mi         | TRD Adjustment                                                                                                                                                     |                          | mph                                                                                 |
| FFS (measured)                                                                                                                | 70.0                   | mph              | FFS                                                                                                                                                                | 70.0                     | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                                 |                        | mph              | 113                                                                                                                                                                | 70.0                     | трт                                                                                 |
| LOS and Performance                                                                                                           | e Measures             |                  | Design (N)                                                                                                                                                         |                          |                                                                                     |
| Operational (LOS)<br>v <sub>p</sub> = (V or DDHV) / (PHF x I<br>x f <sub>p</sub> )                                            | √x f <sub>HV</sub> 526 | pc/h/in          | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x                                                                                                        | N x f <sub>HV</sub>      | pc/h/ln                                                                             |
| S                                                                                                                             | 70.0                   | mph              | x f <sub>p</sub> )                                                                                                                                                 |                          |                                                                                     |
| D = v <sub>p</sub> / S                                                                                                        | 7.5                    | pc/mi/in         | D = 1. / C                                                                                                                                                         |                          | mph                                                                                 |
| .os                                                                                                                           | Α                      |                  | D = v <sub>p</sub> / S<br>Required Number of Lanes                                                                                                                 | s, N                     | pc/mi/ln                                                                            |
| Glossary                                                                                                                      |                        |                  | Factor Location                                                                                                                                                    |                          |                                                                                     |
| N - Number of lanes  V - Hourly volume  V <sub>p</sub> - Flow rate  LOS - Level of service speed  DDHV - Directional design h | BFFS - Bas             |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 | 11-13                    | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

Generated: 10/16/2014 3:43 PM

| General Information                                                                                            |                                                     |                   | Site Information                                                                                                            |                     |                                                                                     |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|
| Analyst                                                                                                        |                                                     |                   | Highway/Direction of Trave                                                                                                  |                     |                                                                                     |
| Agency or Company                                                                                              | URS                                                 |                   | From/To                                                                                                                     | EL Slip<br>Termin   | Ramp/E-W                                                                            |
| Date Performed<br>Analysis Time Period                                                                         | 10/16/2014<br>AM                                    |                   | Jurisdiction<br>Analysis Year                                                                                               |                     | rough County                                                                        |
| Project Description East-                                                                                      |                                                     |                   |                                                                                                                             |                     |                                                                                     |
| ✓ Oper.(LOS)                                                                                                   | N                                                   |                   | Des.(N)                                                                                                                     | ☐ Pla               | nning Data                                                                          |
| Flow Inputs                                                                                                    |                                                     |                   |                                                                                                                             |                     |                                                                                     |
| Volume, V<br>AADT                                                                                              | 1290                                                | veh/h<br>veh/day  | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                  | 0.92<br>3           |                                                                                     |
| Peak-Hr Prop. of AADT, K                                                                                       |                                                     |                   | %RVs, P <sub>R</sub>                                                                                                        | 0                   |                                                                                     |
| Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                               |                                                     | veh/h             | General Terrain: Grade % Length Up/Down %                                                                                   | Level<br>mi         |                                                                                     |
| Calculate Flow Adjus                                                                                           | tments                                              |                   |                                                                                                                             |                     |                                                                                     |
| fp                                                                                                             | 1.00                                                |                   | E <sub>R</sub>                                                                                                              | 1.2                 |                                                                                     |
| E <sub>T</sub>                                                                                                 | 1.5                                                 |                   | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$                                                                                 | )] <i>0</i> .985    |                                                                                     |
| Speed Inputs                                                                                                   |                                                     |                   | Calc Speed Adj and                                                                                                          | FFS                 |                                                                                     |
| ane Width                                                                                                      |                                                     | ft                |                                                                                                                             |                     |                                                                                     |
| Rt-Side Lat. Clearance                                                                                         |                                                     | ft                | f <sub>LW</sub>                                                                                                             |                     | mph                                                                                 |
| Number of Lanes, N                                                                                             | 3                                                   | 5                 | f <sub>LC</sub>                                                                                                             |                     | mph                                                                                 |
| Total Ramp Density, TRD                                                                                        |                                                     | ramps/mi          | TRD Adjustment                                                                                                              |                     | mph                                                                                 |
| FFS (measured)                                                                                                 | 70.0                                                | mph               | FFS                                                                                                                         | 70.0                | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                  |                                                     | mph               | ,,,,                                                                                                                        |                     |                                                                                     |
| LOS and Performance                                                                                            | e Measures                                          |                   | Design (N)                                                                                                                  |                     |                                                                                     |
| Operational (LOS)                                                                                              | J v f                                               |                   | Design (N)<br>Design LOS                                                                                                    |                     |                                                                                     |
| $V_p = (V \text{ or DDHV}) / (PHF x)$ $(f_p)$                                                                  |                                                     | pc/h/ln           | $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$                                                                                 | N x f <sub>HV</sub> | pc/h/ln                                                                             |
| 3                                                                                                              | 70.0                                                | mph               | s <sup>p</sup>                                                                                                              |                     | mph                                                                                 |
| $0 = v_p / S$                                                                                                  | 6.8                                                 | pc/mi/ln          | D = v <sub>p</sub> / S                                                                                                      |                     | pc/mi/ln                                                                            |
| .os                                                                                                            | Α                                                   |                   | Required Number of Lanes                                                                                                    | , N                 | <b>p</b>                                                                            |
| Glossary                                                                                                       |                                                     |                   | Factor Location                                                                                                             |                     |                                                                                     |
| I - Number of lanes  / - Hourly volume  p - Flow rate  OS - Level of service  peed  DHV - Directional design i | S - Speed<br>D - Densit<br>FFS - Free<br>BFFS - Bas | ty<br>-flow speed | $E_R$ - Exhibits 11-10, 11-12<br>$E_T$ - Exhibits 11-10, 11-11,<br>$f_p$ - Page 11-18<br>LOS, S, FFS, $v_p$ - Exhibits 11-3 |                     | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50 Generated: 10/16/2014 3:43 PM

|                                                                                                                                | BASIC FR                | EEWAY SE         | GMENTS WORKSHEE                                                                                                                                                    | . [                  |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                            |                         |                  | Site Information                                                                                                                                                   |                      |                                                                                     |
| Analyst                                                                                                                        |                         |                  | Highway/Direction of Trave                                                                                                                                         |                      |                                                                                     |
| Agency or Company                                                                                                              | URS                     |                  | From/To                                                                                                                                                            | Slip Rai<br>Junctioi | mp/l-75/l-275                                                                       |
| Date Performed<br>Analysis Time Period                                                                                         | 10/6/2014<br>AM         |                  | Jurisdiction<br>Analysis Year                                                                                                                                      |                      | ough County                                                                         |
| Project Description East-                                                                                                      | West Rd.                |                  |                                                                                                                                                                    |                      |                                                                                     |
|                                                                                                                                |                         | r :              | 0es.(N)                                                                                                                                                            | ☐ Pla                | nning Data                                                                          |
| Flow Inputs                                                                                                                    |                         |                  |                                                                                                                                                                    |                      |                                                                                     |
| Volume, V<br>AADT                                                                                                              | 1920                    | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.92<br>3            |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                   |                         | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi     |                                                                                     |
| Calculate Flow Adjus                                                                                                           | tments                  |                  |                                                                                                                                                                    |                      |                                                                                     |
| fp                                                                                                                             | 1.00                    |                  | E <sub>R</sub>                                                                                                                                                     | 1.2                  |                                                                                     |
| E <sub>T</sub>                                                                                                                 | 1.5                     |                  | $f_{HV} = 1/(1+P_T(E_T-1) + P_R(E_R-1)$                                                                                                                            | )] 0.985             |                                                                                     |
| Speed inputs                                                                                                                   |                         |                  | Calc Speed Adj and                                                                                                                                                 | FFS                  |                                                                                     |
| Lane Width                                                                                                                     |                         | ft               |                                                                                                                                                                    |                      |                                                                                     |
| Rt-Side Lat. Clearance                                                                                                         |                         | ft               | f <sub>cw</sub>                                                                                                                                                    |                      | mph                                                                                 |
| Number of Lanes, N                                                                                                             | 3                       |                  | f <sub>LC</sub>                                                                                                                                                    |                      | mph                                                                                 |
| Total Ramp Density, TRD                                                                                                        |                         | ramps/mi         | TRD Adjustment                                                                                                                                                     |                      | mph                                                                                 |
| FFS (measured)                                                                                                                 | 70.0                    | mph              | FFS                                                                                                                                                                | 70.0                 | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                                  |                         | mph              |                                                                                                                                                                    |                      |                                                                                     |
| LOS and Performance                                                                                                            | e Measures              | 5                | Design (N)                                                                                                                                                         |                      |                                                                                     |
| Operational (LOS)<br>v <sub>p</sub> = (V or DDHV) / (PHF x N                                                                   | N x f <sub>HV</sub> 706 | pc/h/ln          | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x                                                                                           | N x f <sub>HV</sub>  | pc/h/ln                                                                             |
| x f <sub>p</sub> )                                                                                                             | 70.0                    | mnh              | x f <sub>p</sub> )                                                                                                                                                 |                      | possui                                                                              |
| \$<br>D=v /8                                                                                                                   | 10.1                    | mph<br>pc/mi/ln  | s                                                                                                                                                                  |                      | mph                                                                                 |
| D=v <sub>p</sub> /S<br>LOS                                                                                                     | 70.1<br>A               | ролили           | $D = v_p / S$                                                                                                                                                      |                      | pc/mi/ln                                                                            |
| 103                                                                                                                            | Α                       |                  | Required Number of Lanes                                                                                                                                           | s, N                 |                                                                                     |
| Glossary                                                                                                                       |                         |                  | Factor Location                                                                                                                                                    |                      |                                                                                     |
| N - Number of lanes  / - Hourly volume  / <sub>p</sub> - Flow rate  LOS - Level of service  speed  DDHV - Directional design h | BFFS - Ba               |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                      | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

Generated: 10/16/2014 3:43 PM

|                                                                                                                           | BASIC FR                                      | EEWAY SE                   | GMENTS WORKSHEE                                                                                                                  | T                             |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                       |                                               |                            | Site Information                                                                                                                 |                               |                                                                                      |
| Analyst Agency or Company Date Performed Analysis Time Period Project Description East-                                   | URS<br>10/6/2014<br>AM                        |                            | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                           | Bearss                        | B Express Lanes<br>Ave/E-W Slip Ramp<br>ough County                                  |
| ✓ Oper.(LOS)                                                                                                              | Prost Noda                                    |                            | Pes.(N)                                                                                                                          | □ Plar                        | nning Data                                                                           |
| Flow Inputs                                                                                                               |                                               |                            |                                                                                                                                  |                               |                                                                                      |
| Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                                     | 1860                                          | veh/h<br>veh/day<br>veh/h  | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length         | 0.92<br>0<br>0<br>Level<br>mi |                                                                                      |
|                                                                                                                           |                                               |                            | Up/Down %                                                                                                                        |                               |                                                                                      |
| Calculate Flow Adjus                                                                                                      | tments                                        |                            |                                                                                                                                  |                               |                                                                                      |
| $f_p$                                                                                                                     | 1.00                                          |                            | E <sub>R</sub>                                                                                                                   | 1.2                           |                                                                                      |
| E <sub>T</sub>                                                                                                            | 1.5                                           |                            | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$                                                                                      | )] 1.000                      |                                                                                      |
| Speed Inputs                                                                                                              |                                               |                            | Calc Speed Adj and I                                                                                                             | FFS                           |                                                                                      |
| Lane Width                                                                                                                |                                               | ft                         |                                                                                                                                  |                               |                                                                                      |
| Rt-Side Lat. Clearance                                                                                                    |                                               | ft                         | f <sub>LW</sub>                                                                                                                  |                               | mph                                                                                  |
| Number of Lanes, N                                                                                                        | 2                                             |                            | f <sub>LC</sub>                                                                                                                  |                               | mph                                                                                  |
| Total Ramp Density, TRD                                                                                                   |                                               | ramps/mi                   | TRD Adjustment                                                                                                                   |                               | mph                                                                                  |
| FFS (measured)<br>Base free-flow Speed,<br>BFFS                                                                           | 70.0                                          | mph<br>mph                 | FFS                                                                                                                              | 70.0                          | mph                                                                                  |
| LOS and Performanc                                                                                                        | e Measures                                    |                            | Design (N)                                                                                                                       |                               |                                                                                      |
| Operational (LOS)  v <sub>p</sub> = (V or DDHV) / (PHF x I x f <sub>p</sub> ) S D = v <sub>p</sub> / S LOS                | N x f <sub>HV</sub> 1011<br>70.0<br>14.4<br>B | pc/h/ln<br>mph<br>pc/mi/ln | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x x f <sub>p</sub> ) S D = v <sub>p</sub> / S Required Number of Lanes |                               | pc/h/in<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                  |                                               |                            | Factor Location                                                                                                                  |                               |                                                                                      |
| N - Number of lanes V - Hourly volume v <sub>p</sub> - Flow rate LOS - Level of service speed DDHV - Directional design i | BFFS - Ba                                     |                            | $E_R$ - Exhibits 11-10, 11-12<br>$E_T$ - Exhibits 11-10, 11-11,<br>$f_p$ - Page 11-18<br>LOS, S, FFS, $v_p$ - Exhibits<br>11-3   |                               | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.50

Generated: 10/16/2014 3:43 PM

| =                                                                                                          | BASIC FR                                                           | EEWAY SE          | GMENTS WORKSHEE                                                                                                                                                 | T                        |                                                                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                        |                                                                    |                   | Site Information                                                                                                                                                |                          |                                                                                     |
| Analyst                                                                                                    |                                                                    |                   | Highway/Direction of Trave                                                                                                                                      | ∋l <i>I-275 E</i>        | xpress/NB                                                                           |
| Agency or Company                                                                                          | URS                                                                |                   | From/To                                                                                                                                                         | EW Slip                  | Ramp - E-W Off-                                                                     |
| Date Performed<br>Analysis Time Period                                                                     | 10/6/2014<br>AM                                                    |                   | Jurisdiction<br>Analysis Year                                                                                                                                   | Ramp<br>Hillsbor<br>2040 | rough County                                                                        |
| Project Description East-                                                                                  | West Raod                                                          |                   |                                                                                                                                                                 |                          |                                                                                     |
| Oper.(LOS)                                                                                                 |                                                                    | Г                 | Des.(N)                                                                                                                                                         | □Pla                     | nning Data                                                                          |
| Flow Inputs                                                                                                |                                                                    |                   |                                                                                                                                                                 |                          |                                                                                     |
| Volume, V<br>AADT                                                                                          | 1070                                                               | veh/h<br>veh/day  | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                      | 0.92<br>0                |                                                                                     |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                                     |                                                                    | veh/h             | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                  | 0<br>Level<br>mi         |                                                                                     |
| Calculate Flow Adjus                                                                                       | tments                                                             |                   |                                                                                                                                                                 |                          |                                                                                     |
| f <sub>p</sub>                                                                                             | 1.00                                                               |                   | E <sub>R</sub>                                                                                                                                                  | 1.2                      |                                                                                     |
| E <sub>T</sub>                                                                                             | 1.5                                                                |                   | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$                                                                                                                     | )] 1.000                 |                                                                                     |
| Speed Inputs                                                                                               |                                                                    |                   | Calc Speed Adj and I                                                                                                                                            | FFS                      |                                                                                     |
| Lane Width                                                                                                 |                                                                    | ft                |                                                                                                                                                                 |                          |                                                                                     |
| Rt-Side Lat. Clearance                                                                                     |                                                                    | ft                | f <sub>LW</sub>                                                                                                                                                 |                          | mph                                                                                 |
| Number of Lanes, N                                                                                         | 2                                                                  |                   | f <sub>LC</sub>                                                                                                                                                 |                          | mph                                                                                 |
| Total Ramp Density, TRD                                                                                    |                                                                    | ramps/mi          | TRD Adjustment                                                                                                                                                  |                          | mph                                                                                 |
| FFS (measured)                                                                                             | 70.0                                                               | mph               | FFS                                                                                                                                                             | 70.0                     | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                              |                                                                    | mph               |                                                                                                                                                                 | 70.0                     | прп                                                                                 |
| LOS and Performance                                                                                        | e Measures                                                         |                   | Design (N)                                                                                                                                                      |                          |                                                                                     |
| <u>Operational (LOS)</u><br>/ <sub>p</sub> = (V or DDHV) / (PHF x N<br>< f <sub>p</sub> )                  | √x f <sub>HV</sub> 582                                             | pc/h/in           | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x                                                                                                     | N x f <sub>HV</sub>      | pc/h/ln                                                                             |
| 5                                                                                                          | 70.0                                                               | mph               | x f <sub>p</sub> )                                                                                                                                              |                          | p-4/                                                                                |
| ) = v <sub>o</sub> / S                                                                                     | 8.3                                                                | pc/mi/ln          | S                                                                                                                                                               |                          | mph                                                                                 |
| .os                                                                                                        | A                                                                  | <b>P</b>          | D = v <sub>p</sub> / S<br>Required Number of Lanes                                                                                                              | , N                      | pc/mi/in                                                                            |
| Glossary                                                                                                   |                                                                    |                   | Factor Location                                                                                                                                                 |                          |                                                                                     |
| I - Number of lanes  - Hourly volume  - Flow rate  OS - Level of service  peed  DHV - Directional design h | S - Speed<br>D - Densit<br>FFS - Free<br>BFFS - Bas<br>nour volume | ty<br>-flow speed | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-3 |                          | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50 Generated: 10/16/2014 3:43 PM

| BASIC FR              | EEWAY SE                                                                                                                                             | GMENTS WORKSHEE                                                                                                                                                                                                                                     | : 1                                                                                                                                   |                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                       |                                                                                                                                                      | To:4 (                                                                                                                                                                                                                                              |                                                                                                                                       |                                       |
|                       |                                                                                                                                                      |                                                                                                                                                                                                                                                     | -1 ( OTE /                                                                                                                            | Evene AMD                             |
| UDO                   |                                                                                                                                                      | * .                                                                                                                                                                                                                                                 |                                                                                                                                       | Express/NB<br>f-Ramp/Express          |
|                       |                                                                                                                                                      |                                                                                                                                                                                                                                                     | Termin                                                                                                                                | ius                                   |
| AM                    |                                                                                                                                                      | Jurisdiction<br>Analysis Year                                                                                                                                                                                                                       | Hillsbo<br>2040                                                                                                                       | rough County                          |
| West Road             |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
|                       | F C                                                                                                                                                  | Des.(N)                                                                                                                                                                                                                                             | ☐ Pia                                                                                                                                 | inning Data                           |
|                       |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
| 1260                  | veh/h                                                                                                                                                | Peak-Hour Factor, PHF                                                                                                                                                                                                                               | 0.92                                                                                                                                  |                                       |
|                       | veh/day                                                                                                                                              | ,                                                                                                                                                                                                                                                   | 0                                                                                                                                     |                                       |
|                       |                                                                                                                                                      | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                             | 0                                                                                                                                     |                                       |
|                       | uoh/h                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
|                       | venn                                                                                                                                                 | •                                                                                                                                                                                                                                                   | 1111                                                                                                                                  |                                       |
| tments                |                                                                                                                                                      | 0                                                                                                                                                                                                                                                   |                                                                                                                                       |                                       |
|                       |                                                                                                                                                      | E                                                                                                                                                                                                                                                   | 1.2                                                                                                                                   |                                       |
|                       |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
| 1.5                   |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
|                       |                                                                                                                                                      | Calc Speed Adj and                                                                                                                                                                                                                                  | FFS                                                                                                                                   |                                       |
|                       | ft                                                                                                                                                   |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
|                       | ft                                                                                                                                                   | f <sub>rw</sub>                                                                                                                                                                                                                                     |                                                                                                                                       | mph                                   |
| 2                     |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       | mph                                   |
|                       | ramps/mi                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                       | mph                                   |
| 70.0                  | mph                                                                                                                                                  |                                                                                                                                                                                                                                                     | 70.0                                                                                                                                  | mph                                   |
|                       | mnh                                                                                                                                                  |                                                                                                                                                                                                                                                     | 70.0                                                                                                                                  | titbu                                 |
|                       |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
| e Measures            |                                                                                                                                                      | Design (N)                                                                                                                                                                                                                                          |                                                                                                                                       |                                       |
|                       |                                                                                                                                                      | Design (N)                                                                                                                                                                                                                                          |                                                                                                                                       |                                       |
| Juf                   |                                                                                                                                                      | Design LOS                                                                                                                                                                                                                                          |                                                                                                                                       |                                       |
| `^' <sup>HV</sup> 685 | pc/h/in                                                                                                                                              | $v_p = (V \text{ or DDHV}) / (PHF x)$                                                                                                                                                                                                               | N x f <sub>HV</sub>                                                                                                                   | /l- //                                |
| 70.0                  | b                                                                                                                                                    | · ·                                                                                                                                                                                                                                                 |                                                                                                                                       | pc/h/in                               |
|                       |                                                                                                                                                      | s                                                                                                                                                                                                                                                   |                                                                                                                                       | mph                                   |
|                       | pc/mi/in                                                                                                                                             | D = v <sub>0</sub> / S                                                                                                                                                                                                                              |                                                                                                                                       | pc/mi/ln                              |
| Α                     |                                                                                                                                                      | · ·                                                                                                                                                                                                                                                 | , N                                                                                                                                   | •                                     |
|                       |                                                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
| S Space               | 4                                                                                                                                                    | Tactor Ecoution                                                                                                                                                                                                                                     |                                                                                                                                       |                                       |
| •                     |                                                                                                                                                      | E <sub>R</sub> - Exhibits 11-10, 11-12                                                                                                                                                                                                              |                                                                                                                                       | f <sub>LW</sub> - Exhibit 11-8        |
|                       | •                                                                                                                                                    | E <sub>T</sub> - Exhibits 11-10, 11-11,                                                                                                                                                                                                             | 11-13                                                                                                                                 | f <sub>LC</sub> - Exhibit 11-9        |
|                       |                                                                                                                                                      | f <sub>p</sub> - Page 11-18                                                                                                                                                                                                                         |                                                                                                                                       | TRD - Page 11-11                      |
| DELO - DS             | PE HEE-HOW                                                                                                                                           | LOS, S, FFS, v <sub>p</sub> - Exhibits                                                                                                                                                                                                              | 11-2,                                                                                                                                 |                                       |
| our volume            |                                                                                                                                                      | 11-3                                                                                                                                                                                                                                                |                                                                                                                                       |                                       |
|                       | URS 10/16/2014 AM West Road  1260  tments 1.00 1.5  2  70.0  Measures  X f <sub>HV</sub> 685 70.0 9.8 A  S - Speed D - Densit FFS - Free- BFFS - Bas | URS 10/16/2014 AM West Road  1260 veh/h veh/day  veh/h  tments 1.00 1.5  ft ft ft 2 ramps/mi 70.0 mph mph  mph  Measures  Ix f <sub>HV</sub> 685 pc/h/ln 70.0 mph 9.8 pc/mi/ln A  S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow | Site Information   Highway/Direction of Trave   From/To   10/16/2014   Jurisdiction   Analysis Year   West Road   F Des.(N)      1260 | Highway/Direction of Travel   1-275/2 |

HCS 2010<sup>TM</sup> Version 6.50 Generated: 10/16/2014 3:43 PM

|                                                                                                                                | BASIC FR                                      | EEWAY SE                           | GMENTS WORKSHEE                                                                                                                  | T                |                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                |                                               |                                    |                                                                                                                                  | ·                |                                                                                      |
| General Information                                                                                                            |                                               |                                    | Site Information                                                                                                                 |                  |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                         | URS<br>10/6/2014<br>AM                        |                                    | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                           | Slip Ra          | General Use Ln/SB<br>amp/l-75/l-275<br>rough County                                  |
| Project Description East-                                                                                                      | vvest Ra.                                     |                                    | Dog (M)                                                                                                                          |                  | in- Data                                                                             |
| □ Oper.(LOS)                                                                                                                   |                                               | J L                                | Des.(N)                                                                                                                          | ı Pia            | nning Data                                                                           |
| <i>Flow Inputs</i><br>Volume, V<br>AADT                                                                                        | 5600                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                       | 0.92<br>3        |                                                                                      |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                   |                                               | veh/h                              | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                   | 0<br>Level<br>mi |                                                                                      |
| Calculate Flow Adjus                                                                                                           | tments                                        |                                    |                                                                                                                                  |                  |                                                                                      |
| f <sub>ρ</sub><br>E <sub>T</sub>                                                                                               | 1.00<br>1.5                                   |                                    | $E_{R}$ $f_{HV} = 1/[1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1)]$                                                                           | 1.2<br>0.985     | _                                                                                    |
| Speed Inputs                                                                                                                   |                                               |                                    | Calc Speed Adj and                                                                                                               |                  |                                                                                      |
| Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS         | 3<br>70.0                                     | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                      | 70.0             | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                            | e Measures                                    |                                    | Design (N)                                                                                                                       |                  |                                                                                      |
| Operational (LOS)  v <sub>p</sub> = (V or DDHV) / (PHF x N  x f <sub>p</sub> ) S D = v <sub>p</sub> / S LOS                    | N x f <sub>HV</sub> 2059<br>61.4<br>33.5<br>D | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x x f <sub>p</sub> ) S D = v <sub>p</sub> / S Required Number of Lanes |                  | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                                       |                                               |                                    | Factor Location                                                                                                                  |                  |                                                                                      |
| N - Number of lanes  V - Hourly volume  V <sub>p</sub> - Flow rate  LOS - Level of service  speed  DDHV - Directional design h | BFFS - Ba                                     |                                    | $E_R$ - Exhibits 11-10, 11-12<br>$E_T$ - Exhibits 11-10, 11-11,<br>$f_p$ - Page 11-18<br>LOS, S, FFS, $v_p$ - Exhibits<br>11-3   |                  | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

| General Information                                                                                                                                                                |                          |                                                                                                                                                                         | Site Information                                                           |                                                                                     |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|
| Analyst                                                                                                                                                                            |                          |                                                                                                                                                                         | Highway/Direction of Travel                                                | I-275 General Use Ln/SB                                                             |          |
| Agency or Company                                                                                                                                                                  | URS                      |                                                                                                                                                                         | From/To                                                                    | Slip Ramp - East-West<br>On/Slip<br>Hillsborough County<br>2040                     |          |
| Date Performed<br>Analysis Time Period                                                                                                                                             | 10/6/2014<br>AM          |                                                                                                                                                                         | Jurisdiction<br>Analysis Year                                              |                                                                                     |          |
| Project Description East-                                                                                                                                                          | West Road                |                                                                                                                                                                         |                                                                            |                                                                                     |          |
| ☑ Oper.(LOS)                                                                                                                                                                       |                          | Des.(N)                                                                                                                                                                 | (N) Planning Data                                                          |                                                                                     |          |
| Flow Inputs                                                                                                                                                                        |                          |                                                                                                                                                                         |                                                                            |                                                                                     |          |
| Volume, V<br>AADT                                                                                                                                                                  | 4200                     | veh/h<br>veh/day                                                                                                                                                        | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                 | 0.92<br>3                                                                           |          |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                                                                       |                          | veh/h                                                                                                                                                                   | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %             | 0<br>Level<br>mi                                                                    |          |
| Calculate Flow Adjus                                                                                                                                                               | tments                   |                                                                                                                                                                         |                                                                            |                                                                                     |          |
| fp                                                                                                                                                                                 | 1.00                     |                                                                                                                                                                         | E <sub>R</sub>                                                             | 1.2                                                                                 |          |
| ÉT                                                                                                                                                                                 | 1.5                      |                                                                                                                                                                         | $f_{HV} = 1/[1+P_{\uparrow}(E_{\uparrow}-1) + P_{R}(E_{R}-1)]$             | 0.985                                                                               |          |
| Speed Inputs                                                                                                                                                                       |                          |                                                                                                                                                                         | Calc Speed Adj and F                                                       | FS                                                                                  |          |
| Lane Width                                                                                                                                                                         |                          | ft                                                                                                                                                                      |                                                                            |                                                                                     |          |
| Rt-Side Lat. Clearance                                                                                                                                                             |                          | ft                                                                                                                                                                      | f <sub>LW</sub>                                                            |                                                                                     | mph      |
| Number of Lanes, N                                                                                                                                                                 | 3                        |                                                                                                                                                                         | f <sub>LC</sub>                                                            |                                                                                     | mph      |
| Total Ramp Density, TRD                                                                                                                                                            |                          | ramps/mi                                                                                                                                                                | TRD Adjustment                                                             |                                                                                     | mph      |
| FFS (measured)                                                                                                                                                                     | 70.0                     | mph                                                                                                                                                                     | FFS                                                                        | 70.0                                                                                | mph      |
| Base free-flow Speed,<br>BFFS                                                                                                                                                      |                          | mph                                                                                                                                                                     |                                                                            | 7 0.0                                                                               | itip::   |
| LOS and Performance                                                                                                                                                                | • Measures               |                                                                                                                                                                         | Design (N)                                                                 |                                                                                     |          |
| Operational (LOS)<br>/p = (V or DDHV) / (PHF x N                                                                                                                                   | l x f <sub>HV</sub> 1545 | pc/h/in                                                                                                                                                                 | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x N | x f <sub>HV</sub>                                                                   | pc/h/ln  |
| (f <sub>p</sub> )<br>S                                                                                                                                                             | 68.6                     | mph                                                                                                                                                                     | x f <sub>p</sub> )                                                         |                                                                                     | релинг   |
| ) = v <sub>p</sub> / S                                                                                                                                                             | 22.5                     | pc/mi/in                                                                                                                                                                | S                                                                          |                                                                                     | mph      |
| .OS                                                                                                                                                                                | C                        | pormin                                                                                                                                                                  | D=v <sub>p</sub> /S                                                        |                                                                                     | pc/mi/ln |
|                                                                                                                                                                                    |                          |                                                                                                                                                                         | Required Number of Lanes,                                                  | N                                                                                   |          |
| Blossary                                                                                                                                                                           |                          |                                                                                                                                                                         | Factor Location                                                            |                                                                                     |          |
| - Number of lanes S - Speed - Hourly volume D - Density - Flow rate FFS - Free-flow speed - S - Level of service BFFS - Base free-flow seed - DHV - Directional design hour volume |                          | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 1<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 1:<br>11-3 |                                                                            | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |          |

HCS 2010<sup>TM</sup> Version 6.50

Copyright © 2013 University of Florida, All Rights Reserved

Generated: 10/16/2014 4:45 PM

|                                                                              | BASIC FR                 | EEWAY SE                     | GMENTS WORKSHEE                                                          | Т                   |                                |
|------------------------------------------------------------------------------|--------------------------|------------------------------|--------------------------------------------------------------------------|---------------------|--------------------------------|
| General Information                                                          |                          |                              | Site Information                                                         |                     |                                |
| Analyst                                                                      |                          |                              | Highway/Direction of Trave                                               | el <i>I-275</i> G   | eneral Use Ln/SB               |
| Agency or Company                                                            | URS                      |                              | From/To                                                                  | E-W Or<br>Ramp/E    | n Ramp-Slip                    |
| Date Performed<br>Analysis Time Period                                       | 10/6/2014<br>AM          |                              | Jurisdiction<br>Analysis Year                                            |                     | ough County                    |
| Project Description East-                                                    | West Road                |                              |                                                                          |                     |                                |
|                                                                              |                          | f c                          | es.(N)                                                                   | ☐ Plai              | nning Data                     |
| Flow Inputs                                                                  |                          |                              |                                                                          |                     |                                |
| Volume, V<br>AADT                                                            | 5340                     | veh/h<br>veh/day             | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>               | 0.92<br>3           |                                |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D |                          | veh/h                        | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %           | 0<br>Level<br>mi    |                                |
| Calculate Flow Adjus                                                         | tments                   |                              |                                                                          |                     |                                |
| fp                                                                           | 1.00                     |                              | E <sub>R</sub>                                                           | 1.2                 |                                |
| E <sub>T</sub>                                                               | 1.5                      |                              | $f_{HV} = 1/[1+P_T(E_T-1) + P_R(E_R-1)]$                                 | 1)] 0.985           |                                |
| Speed Inputs                                                                 |                          |                              | Calc Speed Adj and                                                       | FFS                 |                                |
| Lane Width                                                                   |                          | ft                           |                                                                          |                     |                                |
| Rt-Side Lat. Clearance                                                       |                          | ft                           | f <sub>LW</sub>                                                          |                     | mph                            |
| Number of Lanes, N                                                           | 3                        |                              | f <sub>LC</sub>                                                          |                     | mph                            |
| Total Ramp Density, TRD                                                      |                          | ramps/mi                     | TRD Adjustment                                                           |                     | mph                            |
| FFS (measured)                                                               | 70.0                     | mph                          | FFS                                                                      | 70.0                | mph                            |
| Base free-flow Speed,<br>BFFS                                                |                          | mph                          |                                                                          |                     |                                |
| LOS and Performance                                                          | e Measures               |                              | Design (N)                                                               |                     |                                |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x !          | N x f <sub>HV</sub> 1964 | pc/h/ln                      | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x | N x f <sub>HV</sub> | pc/h/in                        |
| x f <sub>p</sub> )<br>S                                                      | 63.2                     | mph                          | x f <sub>p</sub> )                                                       |                     | релип                          |
| D = v <sub>p</sub> / S                                                       | 31.1                     | pc/mi/ln                     | S                                                                        |                     | mph                            |
| LOS                                                                          | D                        | ролини                       | D = v <sub>p</sub> / S                                                   | - N1                | pc/mi/in                       |
| 01                                                                           |                          |                              | Required Number of Lanes                                                 | 5, 14               |                                |
| Glossary                                                                     |                          |                              | Factor Location                                                          |                     |                                |
| N - Number of lanes                                                          | S - Spee                 |                              | E <sub>R</sub> - Exhibits 11-10, 11-12                                   |                     | f <sub>LW</sub> - Exhibit 11-8 |
| V - Hourly volume                                                            | D - Densi                | -                            | E <sub>T</sub> - Exhibits 11-10, 11-11,                                  | 11-13               | f <sub>LC</sub> - Exhibit 11-9 |
| v <sub>p</sub> - Flow rate<br>LOS - Level of service<br>speed                |                          | e-flow speed<br>se free-flow | f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits    | 11-2,               | TRD - Page 11-1                |
| DDHV - Directional design t                                                  | nour volume              |                              | 11-3                                                                     |                     |                                |

HCS 2010<sup>TM</sup> Version 6.50

| General Information                                                                                        |                          |                  | Site Information                                                                                                                                                       |                    |                                                                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|
| Analyst                                                                                                    |                          |                  | Highway/Direction of Travel                                                                                                                                            |                    |                                                                                     |
| Agency or Company                                                                                          | URS                      |                  | From/To                                                                                                                                                                | Beginnin<br>On-Ram | g of Express/EW                                                                     |
| Date Performed<br>Analysis Time Period                                                                     | 10/6/2014<br>AM          |                  | Jurisdiction<br>Analysis Year                                                                                                                                          |                    | ugh County                                                                          |
| Project Description East-                                                                                  | West Road                |                  |                                                                                                                                                                        |                    |                                                                                     |
| ✓ Oper.(LOS)                                                                                               |                          | F   E            | Des.(N)                                                                                                                                                                | ☐ Planr            | ning Data                                                                           |
| Flow Inputs                                                                                                |                          |                  |                                                                                                                                                                        |                    |                                                                                     |
| Volume, V<br>AADT                                                                                          | 2800                     | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                             | 0.94<br>0          |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                               |                          | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                         | 0<br>Level<br>mi   |                                                                                     |
| Calculate Flow Adjus                                                                                       | tments                   |                  |                                                                                                                                                                        |                    |                                                                                     |
| f <sub>p</sub>                                                                                             | 1.00                     |                  | E <sub>R</sub>                                                                                                                                                         | 1.2                |                                                                                     |
| E <sub>T</sub>                                                                                             | 1.5                      |                  | $f_{HV} = 1/[1+P_T(E_T-1)+P_R(E_R-1)]$                                                                                                                                 | 1.000              |                                                                                     |
| Speed inputs                                                                                               |                          |                  | Calc Speed Adj and F                                                                                                                                                   | FS                 |                                                                                     |
| _ane Width                                                                                                 |                          | ft               |                                                                                                                                                                        |                    |                                                                                     |
| Rt-Side Lat. Clearance                                                                                     |                          | ft               | f <sub>LW</sub>                                                                                                                                                        |                    | mph                                                                                 |
| Number of Lanes, N                                                                                         | 2                        |                  | f <sub>LC</sub>                                                                                                                                                        |                    | mph                                                                                 |
| Total Ramp Density, TRD                                                                                    |                          | ramps/mi         | TRD Adjustment                                                                                                                                                         |                    | mph                                                                                 |
| FFS (measured)                                                                                             | 70.0                     | mph              | FFS                                                                                                                                                                    | 70.0               | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                              |                          | mph              | 770                                                                                                                                                                    | 70.0               | прп                                                                                 |
| LOS and Performance                                                                                        | e Measures               |                  | Design (N)                                                                                                                                                             |                    |                                                                                     |
| Operational (LOS)<br>/p = (V or DDHV) / (PHF x N                                                           | N x f <sub>HV</sub> 1489 | pc/h/ln          | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x N                                                                                                          | I x f              |                                                                                     |
| (f <sub>p</sub> )                                                                                          |                          | p 0.7 m. m.      | × f <sub>p</sub> )                                                                                                                                                     | HV                 | pc/h/ln                                                                             |
| 3                                                                                                          | 69.0                     | mph              | s p                                                                                                                                                                    |                    | mph                                                                                 |
| $D = v_p / S$                                                                                              | 21.6                     | pc/mi/in         | D=v <sub>p</sub> /S                                                                                                                                                    |                    | pc/mi/in                                                                            |
| .OS                                                                                                        | С                        |                  | Required Number of Lanes,                                                                                                                                              | N                  | po                                                                                  |
| Glossary                                                                                                   |                          |                  | Factor Location                                                                                                                                                        |                    |                                                                                     |
| I - Number of lanes  - Hourly volume  - Flow rate  OS - Level of service  peed  DHV - Directional design h | BFFS - Ba                |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 1<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 1<br>11-3 | 1-13               | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

Copyright @ 2013 University of Florida, All Rights Reserved

| General Information                                                                                   |                                                    |                   | Site Information                                                                                                                                                       |                     |                                                                                    |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                | URS<br>10/6/2014<br>AM                             |                   | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                                 | EW Oi<br>Ramp       | Express/SB<br>n-Ramp/ EW Slip<br>rough County                                      |
| Project Description East-                                                                             | West Road                                          |                   |                                                                                                                                                                        |                     |                                                                                    |
| ▽ Oper.(LOS)                                                                                          |                                                    | ا تا              | Des.(N)                                                                                                                                                                | ∏ Pla               | anning Data                                                                        |
| Flow Inputs                                                                                           |                                                    |                   |                                                                                                                                                                        |                     |                                                                                    |
| Volume, V<br>AADT                                                                                     | 2790                                               | veh/h<br>veh/day  | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                             | 0.92<br>0           |                                                                                    |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                                |                                                    | veh/h             | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                         | 0<br>Level<br>mi    |                                                                                    |
| Calculate Flow Adjus                                                                                  | tments                                             |                   |                                                                                                                                                                        |                     |                                                                                    |
| f <sub>p</sub><br>E <sub>⊤</sub>                                                                      | 1.00<br>1.5                                        |                   | $E_R$ $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                     | 1.2                 |                                                                                    |
| Speed Inputs                                                                                          |                                                    |                   | Calc Speed Adj and I                                                                                                                                                   |                     |                                                                                    |
| ane Width                                                                                             |                                                    | ft                | Jaio opoda / (a) aiia (                                                                                                                                                | , ,                 |                                                                                    |
| Rt-Side Lat. Clearance                                                                                | •                                                  | ft                | f <sub>LW</sub>                                                                                                                                                        |                     | mph                                                                                |
| Number of Lanes, N Total Ramp Density, TRD                                                            | 2                                                  | ramps/mi          | f <sub>LC</sub><br>TRD Adjustment                                                                                                                                      |                     | mph                                                                                |
| FS (measured)<br>Base free-flow Speed,<br>BFFS                                                        | 70.0                                               | mph<br>mph        | FFS                                                                                                                                                                    | 70.0                | mph<br>mph                                                                         |
| OS and Performance                                                                                    | e Measures                                         |                   | Design (N)                                                                                                                                                             |                     |                                                                                    |
| Operational (LOS) p = (V or DDHV) / (PHF x N                                                          | N x f <sub>HV4540</sub>                            | 0 . 11            | <u>Design (N)</u><br>Design LOS                                                                                                                                        | .1                  |                                                                                    |
| f <sub>p</sub> )                                                                                      | 68.8                                               | pc/h/ln<br>mph    | v <sub>p</sub> = (V or DDHV) / (PHF x !<br>x f <sub>p</sub> )                                                                                                          | A X I <sup>HA</sup> | pc/ħ/ln                                                                            |
| = v <sub>p</sub> / S<br>OS                                                                            | 22.0<br>C                                          | pc/mi/ln          | S<br>D = v <sub>p</sub> / S<br>Required Number of Lanes,                                                                                                               | N                   | mph<br>pc/mi/ln                                                                    |
| iossary                                                                                               |                                                    |                   | Factor Location                                                                                                                                                        |                     |                                                                                    |
| - Number of lanes - Hourly volume , - Flow rate OS - Level of service beed DHV - Directional design h | S - Speed<br>D - Densi<br>FFS - Free<br>BFFS - Bas | ty<br>-flow speed | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11, 1<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 1<br>11-3 |                     | f <sub>LW</sub> - Exhibit 11-6<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11- |

| General Information                                                                                                                                       |                        |                  | Site Information                                                                                                                                                   |                         |                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------|
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                                                    | URS<br>10/6/2014<br>AM |                  | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                             | EW Slip                 | xpress/SB<br>o Ramp/Bearss Av<br>roough County                                      |
| Project Description East-                                                                                                                                 | West Road              |                  | 129.33                                                                                                                                                             |                         |                                                                                     |
| ☑ Oper.(LOS)                                                                                                                                              |                        |                  | Des.(N)                                                                                                                                                            | _                       | nning Data                                                                          |
| Flow Inputs                                                                                                                                               |                        |                  |                                                                                                                                                                    |                         |                                                                                     |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop. D                                                                                | 3300                   | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                             | 0.92<br>0<br>0<br>Level |                                                                                     |
| DDHV = AADT x K x D                                                                                                                                       |                        | veh/h            | Grade % Length<br>Up/Down %                                                                                                                                        | mi                      |                                                                                     |
| Calculate Flow Adjus                                                                                                                                      | tments                 |                  |                                                                                                                                                                    |                         |                                                                                     |
| f <sub>p</sub>                                                                                                                                            | 1.00                   |                  | E <sub>R</sub>                                                                                                                                                     | 1.2                     |                                                                                     |
| E <sub>T</sub>                                                                                                                                            | 1.5                    |                  | $f_{HV} = 1/[1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1)]$                                                                                                                     |                         |                                                                                     |
| Speed Inputs                                                                                                                                              |                        |                  | Calc Speed Adj and                                                                                                                                                 | FFS                     |                                                                                     |
| _ane Width                                                                                                                                                |                        | ft               |                                                                                                                                                                    |                         |                                                                                     |
| Rt-Side Lat. Clearance                                                                                                                                    |                        | ft               | f <sub>LW</sub>                                                                                                                                                    |                         | mph                                                                                 |
| Number of Lanes, N                                                                                                                                        | 2                      |                  | f <sub>LC</sub>                                                                                                                                                    |                         | mph                                                                                 |
| Total Ramp Density, TRD                                                                                                                                   |                        | ramps/mi         | TRD Adjustment                                                                                                                                                     |                         | mph                                                                                 |
| FS (measured)                                                                                                                                             | 70.0                   | mph              | FFS                                                                                                                                                                | 70.0                    | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                                                             |                        | mph              |                                                                                                                                                                    |                         |                                                                                     |
| OS and Performance                                                                                                                                        | e Measures             |                  | Design (N)                                                                                                                                                         |                         |                                                                                     |
| Operational (LOS)<br>/p = (V or DDHV) / (PHF x N                                                                                                          | N x f <sub>HV</sub>    |                  | Design (N) Design LOS                                                                                                                                              |                         |                                                                                     |
| (f <sub>p</sub> )                                                                                                                                         | 65.9                   | pc/h/ln          | $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$                                                                                                                        | N X I <sub>HV</sub>     | pc/h/in                                                                             |
|                                                                                                                                                           | 27.2                   | mph<br>pc/mi/in  | s                                                                                                                                                                  |                         | mph                                                                                 |
| D = v <sub>p</sub> / S<br>.OS                                                                                                                             | D D                    | рентин           | $D = v_p / S$                                                                                                                                                      |                         | pc/mi/ln                                                                            |
| .00                                                                                                                                                       | D                      |                  | Required Number of Lanes                                                                                                                                           | , N                     |                                                                                     |
| Glossary                                                                                                                                                  |                        |                  | Factor Location                                                                                                                                                    |                         |                                                                                     |
| <ul> <li>Number of lanes</li> <li>Hourly volume</li> <li>Flow rate</li> <li>Level of service</li> <li>peed</li> <li>DHV - Directional design h</li> </ul> | BFFS - Ba              |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>τ</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                         | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

file:///C:/Users/bob\_johnson/AppData/Local/Temp/f2k5FB3.tmp

| Lane Width  Rt-Side Lat. Clearance  Number of Lanes, N  Total Ramp Density, TRD  FFS (measured)  Base free-flow Speed, BFFS  LOS and Performance Measures  Tt ft ftw  fLC  TRD Adjustment  FFS  mph  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bearss A<br>Ramp<br>Hillsbord<br>2040<br>Plan<br>Plan<br>0 Level<br>th mi<br>1 %       | B<br>Ave/Express Slip<br>ough County<br>nning Data |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|
| Agency or Company  Date Performed Analysis Time Period PM Analysis Time Period PM Analysis Time Period PM Analysis Year  Project Description East-West Rd  Oper.(LOS)  Flow Inputs  Volume, V AADT Veh/day Peak-Hour Factor, Phych/day WTrucks and Buses, Mercy, Pageneral Terrain: Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D  Calculate Flow Adjustments  fp 1.00 ET 1.5  Fet Fet Fet Fet Fet Fet Fet Fet Fet Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bearss A<br>Ramp<br>Hillsbord<br>2040<br>Plan<br>Plan<br>0 Level<br>th mi<br>1 %       | Ave/Express Slip ough County                       |
| Date Performed PM Analysis Time Period PM Analysis Year    Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ramp Hillsbord 2040  Plan  Plan  0.92  1.0  Level h mi  1.%                            | ough County                                        |
| Analysis Time Period PM Analysis Year  Project Description East-West Rd  Project Description East-West Rd  Project Description East-West Rd  Poper.(LOS)  Flow Inputs  Volume, V 5590 veh/h Peak-Hour Factor, Phack-Hr Prop. of AADT, K Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D  Calculate Flow Adjustments  In the state of the stat | Hillsbord<br>2040<br>Plan<br>IF 0.92<br>P <sub>T</sub> 3<br>0<br>Level<br>th mi<br>1 % |                                                    |
| Flow Inputs  Volume, V 5590 veh/h Peak-Hour Factor, PhaADT veh/day %Trucks and Buses, I Reak-Hr Prop. of AADT, K Reak-Hr Direction Prop, D General Terrain: Grade % Leng Up/Down  Calculate Flow Adjustments  fp 1.00 ER Fr 1.5 from From Calculate Flow Adjustments  Annual Speed Inputs  Lane Width ft Rt-Side Lat. Clearance ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (F 0.92<br>T 3<br>0<br>Level<br>th mi<br>1 %<br>1.2<br>(E <sub>R</sub> - 1)] 0.985     | nning Data                                         |
| Volume, V 5590 veh/h Peak-Hour Factor, PhAADT veh/day %Trucks and Buses, I %RVs, PR General Terrain:  Peak-Hr Prop. of AADT, K %RVs, PR General Terrain: DDHV = AADT x K x D veh/h Grade % Leng Up/Dowl  Calculate Flow Adjustments  fp 1.00 ER FL 1.5 fHV = 1/(1+Pr(ET-1)+PR FLC Table Lat. Clearance ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (F 0.92<br>T 3<br>0<br>Level<br>th mi<br>1 %<br>1.2<br>(E <sub>R</sub> - 1)] 0.985     | nning Data                                         |
| Volume, V 5590 veh/h veh/day %Trucks and Buses, I veh/day %Trucks and Buses, I weh/day %Trucks and Buses, I weh/day %Trucks and Buses, I weh/day %RVs, $P_R$ General Terrain: Grade % Leng Up/Down Calculate Flow Adjustments $f_p                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Level<br>th mi<br>1 %<br>1.2<br>(E <sub>R</sub> - 1)] 0.985                       |                                                    |
| AADT veh/day %Trucks and Buses, Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D  Calculate Flow Adjustments $f_p$ 1.00 $E_T$ 1.5  Speed Inputs  Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD ramps/mi FFS (measured) 70.0 mph Base free-flow Speed, BFFS  LOS and Performance Measures  Veh/h Grade % Leng Up/Down $E_R$ $E_R$ $E_R$ $f_{HV} = 1/[1+P_T(E_T - 1) + P_R)$ $f_{LW}$ $f_{LW}$ $f_{LW}$ $f_{LC}$ TRD Adjustment  FFS  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Level<br>th mi<br>1 %<br>1.2<br>(E <sub>R</sub> - 1)] 0.985                       |                                                    |
| Peak-Hr Direction Prop, D DDHV = AADT x K x D  veh/h  Calculate Flow Adjustments  fp 1.00 E <sub>R</sub> E <sub>T</sub> 1.5 f <sub>HV</sub> = 1/(1+P <sub>T</sub> (E <sub>T</sub> -1)+P <sub>R</sub> Speed Inputs  Lane Width ft Rt-Side Lat. Clearance ft Number of Lanes, N 3 Total Ramp Density, TRD ramps/mi FFS (measured) 70.0 mph Base free-flow Speed, BFFS  LOS and Performance Measures  General Terrain: Grade % Leng Up/Down  E <sub>R</sub> f <sub>HV</sub> = 1/(1+P <sub>T</sub> (E <sub>T</sub> -1)+P <sub>R</sub> f <sub>LC</sub> TRD Adjustment FFS  TRD Adjustment FFS  Design (N)  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Level<br>th mi<br>1 %<br>1.2<br>(E <sub>R</sub> - 1)] 0.985                            |                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E <sub>R</sub> - 1)) 0.985                                                            |                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E <sub>R</sub> - 1)) 0.985                                                            |                                                    |
| $E_T$ 1.5 $f_{HV} = 1/[1+P_T(E_T-1)+P_R]$ Speed InputsCalc Speed Adj aLane WidthftRt-Side Lat. ClearanceftNumber of Lanes, N3Total Ramp Density, TRDramps/miFFS (measured)70.0Base free-flow Speed, BFFSmphLOS and Performance MeasuresDesign (N)Operational (LOS)Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                    |
| Lane Width  Rt-Side Lat. Clearance  Number of Lanes, N  Total Ramp Density, TRD  FFS (measured)  Base free-flow Speed, BFFS  LOS and Performance Measures  Tt ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd FFS                                                                                 |                                                    |
| Rt-Side Lat. Clearance ft  Number of Lanes, N 3  Total Ramp Density, TRD ramps/mi FFS (measured) 70.0 mph Base free-flow Speed, BFFS  LOS and Performance Measures  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                    |
| Number of Lanes, N 3  Total Ramp Density, TRD ramps/mi FFS (measured) 70.0 mph Base free-flow Speed, BFFS  LOS and Performance Measures  Design (N)  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                                    |
| Number of Lanes, N 3  Total Ramp Density, TRD ramps/mi  FFS (measured) 70.0 mph  Base free-flow Speed, BFFS  LOS and Performance Measures  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        | mph                                                |
| Total Ramp Density, TRD ramps/mi FFS (measured) 70.0 mph Base free-flow Speed, BFFS mph  LOS and Performance Measures Design (N)  Operational (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        | mph                                                |
| FFS (measured)  Base free-flow Speed, BFFS  LOS and Performance Measures  Design (N)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        | mph                                                |
| Base free-flow Speed, BFFS  LOS and Performance Measures  Design (N)  Design (N)  Operational (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.0                                                                                   | mph                                                |
| Operational (LOS)  Design (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0                                                                                   |                                                    |
| Operational (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                    |
| $V_p = (V \text{ or DDHV}) / (PHF \times N \times t_{HV} 2056)$ pc/h/ln $V_p = (V \text{ or DDHV}) / (P_p \times f_p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HF x N x f <sub>HV</sub>                                                               | pc/h/ln                                            |
| 61.5 mph (**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | na n b                                             |
| D = v / S 33.4 pc/mi/ln S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        | mph                                                |
| LOS $D = v_p / S$ Required Number of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anes, N                                                                                | pc/mi/in                                           |
| Glossary Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |                                                    |
| N - Number of lanes S - Speed E <sub>R</sub> - Exhibits 11-10, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-12                                                                                   | f <sub>LW</sub> - Exhibit 11-8                     |
| V - Hourly volume D - Density $E_{\tau}$ - Exhibits 11-10, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        | f <sub>LC</sub> - Exhibit 11-9                     |
| v <sub>p</sub> - Flow rate FFS - Free-flow speed f <sub>p</sub> - Page 11-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                      | TRD - Page 11-1                                    |
| LOS - Level of service BFFS - Base free-flow LOS, S, FFS, v <sub>p</sub> - Ext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ibits 11-2,                                                                            |                                                    |
| DDHV - Directional design hour volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                    |

HCS 2010<sup>TM</sup> Version 6.50

Generated: 10/16/2014 3:58 PM

|                                        | BASIC FR                 | EEWAY SE                 | GMENTS WORKSHEET                          |                    |                                |
|----------------------------------------|--------------------------|--------------------------|-------------------------------------------|--------------------|--------------------------------|
| General Information                    |                          |                          | Site Information                          |                    |                                |
| Analyst                                |                          |                          | Highway/Direction of Travel               | Lanes              | 3 General Use                  |
| Agency or Company                      | URS                      |                          | From/To                                   | Express<br>Terminu | Slip Ramp-E-W                  |
| Date Performed                         | 10/6/2014                |                          | Jurisdiction                              |                    | ough County                    |
| Analysis Time Period                   | PM                       |                          | Analysis Year                             | 2040               |                                |
| Project Description East-              | West Road                |                          |                                           |                    |                                |
|                                        |                          | Гр                       | es.(N)                                    | ☐ Plar             | ning Data                      |
| Flow Inputs                            |                          |                          |                                           |                    |                                |
| Volume, V                              | 4800                     | veh/h                    | Peak-Hour Factor, PHF                     | 0.92               |                                |
| AADT                                   |                          | veh/day                  | %Trucks and Buses, P <sub>T</sub>         | 3                  |                                |
| Peak-Hr Prop. of AADT, K               |                          |                          | %RVs, P <sub>R</sub>                      | 0                  |                                |
| Peak-Hr Direction Prop, D              |                          |                          | General Terrain:                          | Level              |                                |
| DDHV = AADT x K x D                    |                          | veh/h                    | Grade % Length                            | mi                 |                                |
|                                        |                          |                          | Up/Down %                                 |                    |                                |
| Calculate Flow Adjus                   | tments                   |                          |                                           |                    |                                |
| $f_p$                                  | 1.00                     |                          | E <sub>R</sub>                            | 1.2                |                                |
| E <sub>T</sub>                         | 1.5                      |                          | $f_{HV} = 1/[1+P_T(E_T-1)+P_R(E_R-1)]$    | 0.985              |                                |
| Speed Inputs                           |                          |                          | Calc Speed Adj and F                      | FS                 |                                |
| ane Width                              |                          | ft                       | 40                                        |                    |                                |
| Rt-Side Lat. Clearance                 |                          | ft                       | f <sub>LW</sub>                           |                    | mph                            |
| Number of Lanes, N                     | 3                        |                          | f <sub>LC</sub>                           |                    | mph                            |
| Total Ramp Density, TRD                |                          | ramps/mi                 |                                           |                    | mph                            |
| FFS (measured)                         | 70.0                     | mph                      | TRD Adjustment                            |                    | ·                              |
| Base free-flow Speed,                  | 70.0                     | ·                        | FFS                                       | 70.0               | mph                            |
| BFFS                                   |                          | mph                      |                                           |                    |                                |
| LOS and Performance                    | e Measures               |                          | Design (N)                                |                    |                                |
|                                        |                          |                          | Design (N)                                |                    |                                |
| Operational (LOS)                      |                          |                          | Design LOS                                |                    |                                |
| $v_p = (V \text{ or DDHV}) / (PHF x )$ | N X 1 <sub>HV</sub> 1765 | pc/h/!n                  | $v_p = (V \text{ or DDHV}) / (PHF x N$    | Lx f <sub>BV</sub> |                                |
| (f <sub>p</sub> )                      |                          | <b>P</b> • · · · · · · · | x f <sub>p</sub> )                        | 114                | pc/h/ln                        |
| 3                                      | 66.3                     | mph                      | C. 'p'                                    |                    | mph                            |
| $D = v_p / S$                          | 26.6                     | pc/mi/ln                 | D = 11 (S                                 |                    | ·                              |
| os                                     | D                        |                          | $D = v_p / S$                             |                    | pc/mi/ln                       |
|                                        |                          |                          | Required Number of Lanes,                 | N                  |                                |
| Glossary                               |                          |                          | Factor Location                           |                    |                                |
| I - Number of lanes                    | S - Spee                 | d                        | E <sub>R</sub> - Exhibits 11-10, 11-12    |                    | f <sub>LW</sub> - Exhibit 11-8 |
| / - Hourly volume                      | D - Densi                | ity                      | E <sub>T</sub> - Exhibits 11-10, 11-11, 1 | 1-13               | f <sub>LC</sub> - Exhibit 11-9 |
| - Flow rate                            | FFS - Free               | -flow speed              | f <sub>a</sub> - Page 11-18               |                    | TRD - Page 11-1                |
| .OS - Level of service                 | BFFS - Ba                | se free-flow             | I P                                       | 4.2                | TVD - Lade (1-)                |
| peed                                   |                          |                          | LOS, S, FFS, v <sub>p</sub> - Exhibits 1  | ⊥ <b>-∠</b> ,      |                                |
| DHV - Directional design h             | our volume               |                          | 11-3                                      |                    |                                |
| opyright © 2013 University of Florid   | a, All Rights Reser      | ved                      | HCS 2010 <sup>TM</sup> Version 5.50       | Generat            | ed: 10/16/2014 3:58 F          |

| General Information                                                                                 |                            |                  | Site Information                                                                                                                                                     |                     |                                                                                     |
|-----------------------------------------------------------------------------------------------------|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|
| Analyst                                                                                             |                            |                  | Highway/Direction of Trave                                                                                                                                           |                     |                                                                                     |
| Agency or Company                                                                                   | URS                        |                  | From/To                                                                                                                                                              | Slip Ra<br>Junctio  | mp/l-75/l-275                                                                       |
| Date Performed<br>Analysis Time Period                                                              | 10/6/2014<br>PM            |                  | Jurisdiction<br>Analysis Year                                                                                                                                        |                     | rough County                                                                        |
| Project Description East-                                                                           | West Rd.                   |                  |                                                                                                                                                                      |                     |                                                                                     |
|                                                                                                     |                            | <u> </u>         | Des.(N)                                                                                                                                                              | ☐ Pla               | nning Data                                                                          |
| Flow Inputs                                                                                         |                            |                  |                                                                                                                                                                      |                     |                                                                                     |
| Volume, V<br>AADT                                                                                   | 5800                       | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                           | 0.92<br>3           |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                        |                            | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                       | 0<br>Level<br>mi    |                                                                                     |
| Calculate Flow Adjus                                                                                | tments                     |                  |                                                                                                                                                                      |                     |                                                                                     |
| f <sub>p</sub>                                                                                      | 1.00                       |                  | E <sub>R</sub>                                                                                                                                                       | 1.2                 |                                                                                     |
| É <sub>T</sub>                                                                                      | 1.5                        |                  | $f_{HV} = 1/(1+P_T(E_T \cdot 1) + P_R(E_R \cdot 1)$                                                                                                                  | 0.985               |                                                                                     |
| Speed Inputs                                                                                        |                            |                  | Calc Speed Adj and I                                                                                                                                                 |                     |                                                                                     |
| ane Width                                                                                           |                            | ft               |                                                                                                                                                                      |                     |                                                                                     |
| Rt-Side Lat. Clearance                                                                              |                            | ft               | f <sub>tw</sub>                                                                                                                                                      |                     | mph                                                                                 |
| Number of Lanes, N                                                                                  | 3                          |                  | f <sub>LC</sub>                                                                                                                                                      |                     | mph                                                                                 |
| Total Ramp Density, TRD                                                                             |                            | ramps/mi         | TRD Adjustment                                                                                                                                                       |                     | mph                                                                                 |
| FFS (measured)                                                                                      | 70.0                       | mph              | FFS                                                                                                                                                                  | 70.0                | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                       |                            | mph              |                                                                                                                                                                      |                     |                                                                                     |
| OS and Performance                                                                                  | e Measures                 |                  | Design (N)                                                                                                                                                           |                     |                                                                                     |
| Operational (LOS)  /p = (V or DDHV) / (PHF x )                                                      | N x f <sub>ear</sub> ,     |                  | <u>Design (N)</u><br>Design LOS                                                                                                                                      |                     |                                                                                     |
| (f <sub>p</sub> )                                                                                   | <sup>11</sup> 2133<br>59.9 | pc/h/ln          | $v_p = (V \text{ or DDHV}) / (PHF x)$<br>$x f_p$                                                                                                                     | V x f <sub>HV</sub> | pc/h/ln                                                                             |
| ) = v / S                                                                                           | 35.6                       | mph<br>pc/mi/in  | s                                                                                                                                                                    |                     | mph                                                                                 |
| ) = v <sub>p</sub> / S<br>OS                                                                        | 55.0<br>E                  | hounti           | $D = v_p / S$                                                                                                                                                        |                     | pc/mi/ln                                                                            |
| 05                                                                                                  | E                          |                  | Required Number of Lanes                                                                                                                                             | , N                 |                                                                                     |
| Blossary                                                                                            |                            |                  | Factor Location                                                                                                                                                      |                     |                                                                                     |
| - Number of lanes - Hourly volume - Flow rate OS - Level of service peed DHV - Directional design h | BFFS - Ba                  |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 1<br>11-3 |                     | f <sub>LW</sub> - Exhibit 11-6<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

|                                                                                                                        | BASIC FR                                      | EEWAY SE                           | GMENTS WORKSHEE                                                                                                                                                 | T                       |                                                                                      |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                    |                                               |                                    | Site Information                                                                                                                                                |                         |                                                                                      |
| Analyst Agency or Company Date Performed Analysis Time Period Project Description East-                                | URS<br>10/6/2014<br>AM                        |                                    | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                          | Bearss                  | IB Express Lanes<br>: Ave/E-W Slip Ram<br>rough County                               |
| ✓ Oper.(LOS)                                                                                                           |                                               | ( r                                | Des.(N)                                                                                                                                                         |                         | nning Data                                                                           |
| Flow Inputs                                                                                                            |                                               | , ,                                | 7C3.(N)                                                                                                                                                         | , 116                   | Inning Data                                                                          |
| Volume, V<br>AADT<br>Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D                                             | 3200                                          | veh/h<br>veh/day                   | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:                                                          | 0.92<br>0<br>0<br>Level |                                                                                      |
| DDHV = AADT x K x D                                                                                                    |                                               | veh/h                              | Grade % Length Up/Down %                                                                                                                                        | mi                      |                                                                                      |
| Calculate Flow Adjus                                                                                                   | tments                                        |                                    |                                                                                                                                                                 |                         |                                                                                      |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                       | 1.00<br>1.5                                   |                                    | $E_R$ $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                              | 1.2<br>)]1.000          |                                                                                      |
| Speed Inputs                                                                                                           |                                               |                                    | Calc Speed Adj and I                                                                                                                                            | FFS                     |                                                                                      |
| Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS | 70.0                                          | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub> f <sub>LC</sub> TRD Adjustment  FFS                                                                                                             | 70.0                    | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performance                                                                                                    | e Measures                                    | i                                  | Design (N)                                                                                                                                                      |                         |                                                                                      |
| Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x f_p)$ $S = v_p / S$ LOS                                      | N x f <sub>HV</sub> 1739<br>66.6<br>26.1<br>D | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times f_p)$ S $D = v_p / S$ Required Number of Lanes                                                   |                         | pc/h/ln<br>mph<br>pc/mi/ln                                                           |
| Glossary                                                                                                               |                                               |                                    | Factor Location                                                                                                                                                 |                         |                                                                                      |
| N - Number of lanes  / - Hourly volume  / - Flow rate  OS - Level of service  peed  DDHV - Directional design h        | BFFS - Bas                                    |                                    | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits 11-3 |                         | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.50

Generated: 10/16/2014 3:58 PM

|                                                                                               | BASIC FR                 | EEWAY SE         | GMENTS WORKSHEE                                                                                                        | T                        |                                                                                      |
|-----------------------------------------------------------------------------------------------|--------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                           |                          |                  | Site Information                                                                                                       |                          |                                                                                      |
| Analyst                                                                                       |                          |                  | Highway/Direction of Trave                                                                                             | el <i>I-275 E</i>        | xpress/NB                                                                            |
| Agency or Company                                                                             | URS                      |                  | From/To                                                                                                                |                          | Ramp - E-W Off-                                                                      |
| Date Performed<br>Analysis Time Period                                                        | 10/6/2014<br>AM          |                  | Jurisdiction<br>Analysis Year                                                                                          | Ramp<br>Hillsbor<br>2040 | rough County                                                                         |
| Project Description East-                                                                     | West Raod                |                  |                                                                                                                        |                          |                                                                                      |
| ™ Oper.(LOS)                                                                                  |                          |                  | Des.(N)                                                                                                                | ſ Pla                    | nning Data                                                                           |
| Flow Inputs                                                                                   |                          |                  |                                                                                                                        |                          |                                                                                      |
| Volume, V<br>AADT                                                                             | 2390                     | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                             | 0.92<br>0                |                                                                                      |
| Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                        |                          | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                         | 0<br>Level<br>mi         |                                                                                      |
| Calculate Flow Adjus                                                                          | tments                   |                  |                                                                                                                        |                          |                                                                                      |
| f <sub>p</sub>                                                                                | 1.00                     |                  | E <sub>R</sub>                                                                                                         | 1.2                      |                                                                                      |
| E <sub>T</sub>                                                                                | 1.5                      |                  | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$                                                                            | 1)] 1.000                |                                                                                      |
| Speed Inputs                                                                                  |                          |                  | Calc Speed Adj and                                                                                                     | FFS                      |                                                                                      |
| Lane Width                                                                                    |                          | ft               |                                                                                                                        |                          |                                                                                      |
| Rt-Side Lat. Clearance                                                                        |                          | ft               | f <sub>LW</sub>                                                                                                        |                          | mph                                                                                  |
| Number of Lanes, N                                                                            | 2                        |                  | f <sub>LC</sub>                                                                                                        |                          | mph                                                                                  |
| Total Ramp Density, TRD                                                                       |                          | ramps/mi         | TRD Adjustment                                                                                                         |                          | mph                                                                                  |
| FFS (measured)                                                                                | 70.0                     | mph              | FFS                                                                                                                    | 70.0                     | mph                                                                                  |
| Base free-flow Speed,<br>BFFS                                                                 |                          | mph              |                                                                                                                        | 7 0.0                    | 111911                                                                               |
| LOS and Performance                                                                           | e Measures               | \$               | Design (N)                                                                                                             |                          |                                                                                      |
| <u>Operational (LOS)</u><br>v <sub>p</sub> = (V or DDHV) / (PHF x f<br>x f <sub>p</sub> )     | N x f <sub>HV</sub> 1299 | pc/h/ln          | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x                                                            | N x f <sub>HV</sub>      | pc/h/lin                                                                             |
| S                                                                                             | 69.9                     | mph              | x f <sub>p</sub> )                                                                                                     |                          |                                                                                      |
| D = v <sub>p</sub> / S                                                                        | 18.6                     | pc/mi/ln         | S                                                                                                                      |                          | mph                                                                                  |
| Los                                                                                           | Ç                        | ·                | $D = v_p / S$                                                                                                          |                          | pc/mi/ln                                                                             |
|                                                                                               |                          |                  | Required Number of Lanes                                                                                               | 5, N                     |                                                                                      |
| Glossary                                                                                      |                          |                  | Factor Location                                                                                                        |                          |                                                                                      |
| N - Number of lanes V - Hourly volume v <sub>p</sub> - Flow rate LOS - Level of service speed |                          |                  | $E_R$ - Exhibits 11-10, 11-12<br>$E_T$ - Exhibits 11-10, 11-11,<br>$f_p$ - Page 11-18<br>LOS, S, FFS, $v_p$ - Exhibits |                          | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |
| DDHV - Directional design h                                                                   | nour volume              |                  | 11-3                                                                                                                   |                          |                                                                                      |

HCS 2010<sup>TM</sup> Version 6.50

Generated: 10/16/2014 3:58 PM

|                                                                                      | BASIC FR                 | EEWAY SE         | GMENTS WORKSHEE                                                                                                                                                    | T                          |                                                                                     |
|--------------------------------------------------------------------------------------|--------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                  |                          |                  | Site Information                                                                                                                                                   |                            |                                                                                     |
| Analyst                                                                              |                          |                  | Highway/Direction of Trave                                                                                                                                         | el <i>I-275/ E</i>         | Express/NB                                                                          |
| Agency or Company                                                                    | URS                      |                  | From/To                                                                                                                                                            | EW Off                     | -Ramp/Express                                                                       |
| Date Performed<br>Analysis Time Period                                               | 10/6/2014<br>PM          |                  | Jurisdiction<br>Analysis Year                                                                                                                                      | Termin<br>Hillsboi<br>2040 | us<br>rough County                                                                  |
| Project Description East-                                                            | West Road                |                  |                                                                                                                                                                    |                            |                                                                                     |
|                                                                                      |                          |                  | Des.(N)                                                                                                                                                            | ſ <sup>™</sup> Pla         | nning Data                                                                          |
| Flow Inputs                                                                          |                          |                  |                                                                                                                                                                    |                            |                                                                                     |
| Volume, V<br>AADT                                                                    | 2000                     | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.92<br>0                  |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D         |                          | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi           |                                                                                     |
| Calculate Flow Adjus                                                                 | tments                   |                  |                                                                                                                                                                    |                            |                                                                                     |
| f <sub>p</sub>                                                                       | 1.00                     |                  | E <sub>R</sub>                                                                                                                                                     | 1,2                        |                                                                                     |
| Ë <sub>T</sub>                                                                       | 1.5                      |                  | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                       | )] 1.000                   |                                                                                     |
| Speed Inputs                                                                         |                          |                  | Calc Speed Adj and                                                                                                                                                 | FFS                        |                                                                                     |
| Lane Width                                                                           |                          | ft               |                                                                                                                                                                    |                            |                                                                                     |
| Rt-Side Lat. Clearance                                                               |                          | ft               | f <sub>LW</sub>                                                                                                                                                    |                            | mph                                                                                 |
| Number of Lanes, N                                                                   | 2                        |                  | fLC                                                                                                                                                                |                            | m <b>p</b> h                                                                        |
| Total Ramp Density, TRD                                                              |                          | ramps/mi         | TRD Adjustment                                                                                                                                                     |                            | mph                                                                                 |
| FFS (measured)                                                                       | 70.0                     | mph              | FFS                                                                                                                                                                | 70.0                       | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                        |                          | mph              | 113                                                                                                                                                                | 7 0.0                      | тири                                                                                |
| LOS and Performance                                                                  | e Measures               | \$               | Design (N)                                                                                                                                                         |                            |                                                                                     |
| Operational (LOS)<br>v <sub>p</sub> = (V or DDHV) / (PHF x N                         | N x f <sub>HV</sub> 1087 | pc/h/ln          | Design (N) Design LOS v <sub>o</sub> = (V or DDHV) / (PHF x                                                                                                        | N x f <sub>HV</sub>        | pc/h/in                                                                             |
| (f <sub>p</sub> )                                                                    | 70.0                     | mnh              | x f <sub>p</sub> )                                                                                                                                                 |                            | pon#iii                                                                             |
| )<br>D=v /S                                                                          | 70.0<br>15.5             | mph<br>pc/mi/ln  | s                                                                                                                                                                  |                            | mph                                                                                 |
| D=v <sub>p</sub> /S<br>LOS                                                           | 10.0<br>B                | рениян           | D = v <sub>p</sub> / S                                                                                                                                             |                            | pc/mi/in                                                                            |
|                                                                                      |                          |                  | Required Number of Lanes                                                                                                                                           | s, N                       |                                                                                     |
| Glossary                                                                             |                          |                  | Factor Location                                                                                                                                                    | _                          |                                                                                     |
| N - Number of lanes  / - Hourly volume  /p - Flow rate  LOS - Level of service speed | BFFS - Ba                |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                            | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |
| DDHV - Directional design h                                                          | our volume               |                  |                                                                                                                                                                    |                            |                                                                                     |

|                                                                                                                        | BASIC FR                                     | EEWAY SE                           | GMENTS WORKSHEE                                                                                                                       | T                             |                                                                                     |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                    |                                              |                                    | Site Information                                                                                                                      |                               |                                                                                     |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                 | URS<br>10/6/2014<br>PM                       |                                    | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                | Slip Ra                       | General Use Ln/SB<br>mp/l-75/l-275<br>rough County                                  |
| Project Description East-  Project Description East-  Oper.(LOS)                                                       | vvest Ra.                                    |                                    | Des.(N)                                                                                                                               | T pia                         | nning Data                                                                          |
| Flow Inputs                                                                                                            |                                              | 1 4                                | 7e5.(IV)                                                                                                                              | ć 1-1 <b>c</b> i              | illing Data                                                                         |
| Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                                  | 2650                                         | veh/h<br>veh/day<br>veh/h          | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down % | 0.92<br>3<br>0<br>Level<br>mi |                                                                                     |
| Calculate Flow Adjus                                                                                                   | tments                                       |                                    | Оргион п                                                                                                                              |                               |                                                                                     |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                       | 1.00                                         |                                    | $E_{R}$ $f_{HV} = 1/[1+P_{T}(E_{T}-1)+P_{R}(E_{R}-1)]$                                                                                | 1.2<br>))0.985                |                                                                                     |
| Speed Inputs                                                                                                           |                                              |                                    | Calc Speed Adj and                                                                                                                    |                               |                                                                                     |
| Lane Width Rt-Side Lat. Clearance Number of Lanes, N Fotal Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS | 3<br>70.0                                    | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>tw</sub><br>f <sub>LC</sub><br>TRD Adjustment<br>FFS                                                                           | 70.0                          | mph<br>mph<br>mph<br>mph                                                            |
| OS and Performance                                                                                                     | e Measures                                   |                                    | Design (N)                                                                                                                            |                               |                                                                                     |
| Operational (LOS)  /p = (V or DDHV) / (PHF x N  ( f <sub>p</sub> )  S  D = v <sub>p</sub> / S  LOS                     | N x f <sub>HV</sub> 975<br>70.0<br>13.9<br>B | pc/h/in<br>mph<br>pc/mi/ln         | Design (N) Design LOS  v <sub>p</sub> = (V or DDHV) / (PHF x x f <sub>p</sub> ) S D = v <sub>p</sub> / S Required Number of Lanes     |                               | pc/h/in<br>mph<br>pc/mi/in                                                          |
| Glossary                                                                                                               |                                              |                                    | Factor Location                                                                                                                       |                               |                                                                                     |
| N - Number of lanes  - Hourly volume  - Flow rate  OS - Level of service  DDHV - Directional design h                  | BFFS - Ba                                    |                                    | $E_R$ - Exhibits 11-10, 11-12<br>$E_T$ - Exhibits 11-10, 11-11,<br>$f_p$ - Page 11-18<br>LOS, S, FFS, $v_p$ - Exhibits<br>11-3        |                               | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BASIC FR    | EEWAY SE                                | GMENTS WORKSHEE                                | :T                  |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|------------------------------------------------|---------------------|---------------------------------|
| General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                         | Site Information                               |                     |                                 |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                         | Highway/Direction of Trave                     |                     |                                 |
| Agency or Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | URS         |                                         | From/To                                        | Slip Ra<br>On/Slip  | mp - East-West                  |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/6/2014   |                                         | Jurisdiction                                   |                     | rough County                    |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PM          |                                         | Analysis Year                                  | 2040                |                                 |
| Project Description East-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | West Road   |                                         |                                                | PAGE                |                                 |
| ✓ Oper.(LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                         | Des.(N)                                        | l Pia               | nning Data                      |
| Flow Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                         |                                                |                     |                                 |
| Volume, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1810        | veh/h                                   | Peak-Hour Factor, PHF                          | 0.92                |                                 |
| AADT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | veh/day                                 | %Trucks and Buses, P <sub>T</sub>              | 3                   |                                 |
| Peak-Hr Prop. of AADT, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         | %RVs, P <sub>R</sub>                           | 0                   |                                 |
| Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | veh/h                                   | General Terrain: Grade % Length                | Level<br>mi         |                                 |
| DDITY TOLD I X IX X D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | • • • • • • • • • • • • • • • • • • • • | Up/Down %                                      | ****                |                                 |
| Calculate Flow Adjus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tments      |                                         |                                                |                     |                                 |
| f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00        |                                         | E <sub>R</sub>                                 | 1.2                 |                                 |
| É <sub>T</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5         |                                         | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$    | )] <i>0.985</i>     |                                 |
| Speed Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                         | Calc Speed Adj and                             | FFS                 |                                 |
| Lane Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ft                                      |                                                |                     |                                 |
| Rt-Side Lat. Clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | ft                                      | f <sub>Lw</sub>                                |                     | mph                             |
| Number of Lanes, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3           |                                         | f <sub>LC</sub>                                |                     | mph                             |
| Total Ramp Density, TRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ramps/mi                                | TRD Adjustment                                 |                     | mph                             |
| FFS (measured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70.0        | mph                                     | FFS                                            | 70.0                | mph                             |
| Base free-flow Speed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | mph                                     | ILL9                                           | 70.0                | nipii                           |
| BFFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                         |                                                |                     |                                 |
| LOS and Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Measures  | 3                                       | Design (N)                                     |                     |                                 |
| Operational (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                         | Design (N)                                     |                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nyf         |                                         | Design LOS                                     |                     |                                 |
| $v_p = (V \text{ or DDHV}) / (PHF \times V_p + V_p$ | 1 A HV 666  | pc/h/ln                                 | $v_p = (V \text{ or DDHV}) / (PHF x)$          | N x f <sub>HV</sub> | pc/h/ln                         |
| (f <sub>p</sub> )<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0        | mph                                     | x f <sub>p</sub> )                             |                     | portition                       |
| ) = v <sub>p</sub> / S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5         | pc/mi/ln                                | s                                              |                     | mph                             |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | рениян                                  | $D = v_p / S$                                  |                     | pc/mi/ln                        |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α           |                                         | Required Number of Lanes                       | s, N                |                                 |
| Glossary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         | Factor Location                                |                     |                                 |
| l - Number of lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S - Spee    | ed                                      | E <sub>R</sub> - Exhibits 11-10, 11-12         |                     | f <sub>rw</sub> - Exhibit 11-8  |
| / - Hourly volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D - Dens    | sity                                    | $E_{\rm T}$ - Exhibits 11-10, 11-11,           |                     | f <sub>I.C</sub> - Exhibit 11-9 |
| n Flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FFS - Free  | e-flow speed                            | f <sub>n</sub> - Page 11-18                    | 11-10               | TRD - Page 11-1                 |
| OS - Level of service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BFF\$ - Ba  | ise free-flow                           | I F                                            | 112                 | TND - mage TI-1                 |
| peed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                         | LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 | + 1"Z <sub>1</sub>  |                                 |
| DHV - Directional design h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nour volume |                                         |                                                |                     |                                 |

HCS 2010<sup>TM</sup> Version 6.50

|                                                                                                                    | BASIC FR               | EEWAY SE         | GMENTS WORKSHEE                                                                                                                                                    | ET                |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                |                        |                  | Site Information                                                                                                                                                   |                   |                                                                                     |
| Analyst                                                                                                            |                        |                  | Highway/Direction of Trav                                                                                                                                          | el <i>I-275 G</i> | eneral Use Ln/SB                                                                    |
| Agency or Company                                                                                                  | URS                    |                  | From/To                                                                                                                                                            | E-W Oi<br>Ramp/l  | n Ramp-Slip<br>Bearss                                                               |
| Date Performed<br>Analysis Time Period                                                                             | 10/6/2014<br>PM        |                  | Jurisdiction<br>Analysis Year                                                                                                                                      |                   | rough County                                                                        |
| Project Description East-                                                                                          | West Road              |                  |                                                                                                                                                                    |                   |                                                                                     |
| ✓ Oper.(LOS)                                                                                                       |                        | Γ.               | es.(N)                                                                                                                                                             | Pla               | nning Data                                                                          |
| Flow Inputs                                                                                                        |                        |                  |                                                                                                                                                                    |                   |                                                                                     |
| Volume, V<br>AADT                                                                                                  | 1950                   | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.92<br>3         |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                       |                        | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi  |                                                                                     |
| Calculate Flow Adjus                                                                                               | tments                 |                  |                                                                                                                                                                    |                   |                                                                                     |
| fp                                                                                                                 | 1.00                   |                  | E <sub>R</sub>                                                                                                                                                     | 1.2               |                                                                                     |
| E <sub>T</sub>                                                                                                     | 1.5                    |                  | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$                                                                                                                        | 1)] <i>0</i> .985 |                                                                                     |
| Speed Inputs                                                                                                       |                        |                  | Calc Speed Adj and                                                                                                                                                 | FF <b>S</b>       |                                                                                     |
| Lane Width                                                                                                         |                        | ft               |                                                                                                                                                                    |                   |                                                                                     |
| Rt-Side Lat. Clearance                                                                                             |                        | ft               | f <sub>LW</sub>                                                                                                                                                    |                   | mph                                                                                 |
| Number of Lanes, N                                                                                                 | 3                      |                  | f <sub>LC</sub>                                                                                                                                                    |                   | mph                                                                                 |
| Total Ramp Density, TRD                                                                                            |                        | ramps/mi         | TRD Adjustment                                                                                                                                                     |                   | mph                                                                                 |
| FFS (measured)                                                                                                     | 70.0                   | mph              | FFS                                                                                                                                                                | 70.0              | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                                                      |                        | mph              | 110                                                                                                                                                                | 70.0              | 111941                                                                              |
| LOS and Performance                                                                                                | e Measures             |                  | Design (N)                                                                                                                                                         |                   |                                                                                     |
| Operational (LOS)<br>v <sub>p</sub> = (V or DDHV) / (PHF x N                                                       | √x f <sub>HV 717</sub> | pc/h/ln          | Design (N) Design LOS V <sub>p</sub> = (V or DDHV) / (PHF x                                                                                                        | N x f             |                                                                                     |
| x f <sub>p</sub> )                                                                                                 | , , ,                  | pormin           | × f <sub>p</sub> )                                                                                                                                                 | HV                | pc/h/ln                                                                             |
| \$                                                                                                                 | 70.0                   | mph              | S P                                                                                                                                                                |                   | mph                                                                                 |
| $D = v_p / S$                                                                                                      | 10.2                   | pc/mi/ln         | D = v <sub>p</sub> / S                                                                                                                                             |                   | pc/mi/ln                                                                            |
| LOS                                                                                                                | Α                      |                  | Required Number of Lanes                                                                                                                                           | s, N              | port.in.                                                                            |
| Glossary                                                                                                           |                        |                  | Factor Location                                                                                                                                                    |                   |                                                                                     |
| N - Number of lanes  / - Hourly volume  /p - Flow rate  LOS - Level of service  speed  DDHV - Directional design h | BFFS - Ba              |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                   | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

|                                                                                                                    | BASIC FR              | EEWAY SE         | GMENTS WORKSHEE                                                                                                                                                    | T                          |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                                                |                       |                  | Site Information                                                                                                                                                   |                            |                                                                                     |
| Analyst                                                                                                            |                       |                  | Highway/Direction of Trave                                                                                                                                         | el <i>I-275E</i> x         | cpress/SB                                                                           |
| Agency or Company                                                                                                  | URS                   |                  | From/To                                                                                                                                                            |                            | ing of Express/EW                                                                   |
| Date Performed<br>Analysis Time Period                                                                             | 10/6/2014<br>PM       |                  | Jurisdiction<br>Analysis Year                                                                                                                                      | On-Rar<br>Hillsbor<br>2040 | rough County                                                                        |
| Project Description East-                                                                                          | West Road             |                  |                                                                                                                                                                    |                            |                                                                                     |
| ✓ Oper.(LOS)                                                                                                       |                       | Γ [              | Des.(N)                                                                                                                                                            | ∏ Pla                      | nning Data                                                                          |
| Flow Inputs                                                                                                        |                       |                  |                                                                                                                                                                    |                            |                                                                                     |
| Volume, V<br>AADT                                                                                                  | 1680                  | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.92<br>0                  |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D                                       |                       | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi           |                                                                                     |
| Calculate Flow Adjus                                                                                               | tments                |                  |                                                                                                                                                                    |                            |                                                                                     |
| f <sub>p</sub>                                                                                                     | 1.00                  |                  | E <sub>R</sub>                                                                                                                                                     | 1.2                        |                                                                                     |
| E <sub>T</sub>                                                                                                     | 1.5                   |                  | $f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)$                                                                                                                        | )] 1.000                   |                                                                                     |
| Speed Inputs                                                                                                       |                       |                  | Calc Speed Adj and                                                                                                                                                 | FFS                        |                                                                                     |
| Lane Width                                                                                                         |                       | ft               |                                                                                                                                                                    |                            |                                                                                     |
| Rt-Side Lat. Clearance                                                                                             |                       | ft               | f <sub>LW</sub>                                                                                                                                                    |                            | mph                                                                                 |
| Number of Lanes, N                                                                                                 | 2                     |                  | f <sub>LC</sub>                                                                                                                                                    |                            | mph                                                                                 |
| Total Ramp Density, TRD                                                                                            |                       | ramps/mi         | TRD Adjustment                                                                                                                                                     |                            | mph                                                                                 |
| FFS (measured)                                                                                                     | 70.0                  | mph              | FFS                                                                                                                                                                | 70.0                       | •                                                                                   |
| Base free-flow Speed,<br>BFFS                                                                                      |                       | mph              | FFS                                                                                                                                                                | 70.0                       | mph                                                                                 |
| LOS and Performance                                                                                                | e Measures            |                  | Design (N)                                                                                                                                                         |                            |                                                                                     |
| Operational (LOS)<br>V <sub>p</sub> = (V or DDHV) / (PHF x N                                                       | √x f <sub>HVα13</sub> | pc/h/ln          | <u>Design (N)</u><br>Design LOS<br>v <sub>p</sub> = (V or DDHV) / (PHF x                                                                                           | Nyf                        |                                                                                     |
| (f <sub>p</sub> )                                                                                                  | 910                   | pormit           | $x f_{p}$                                                                                                                                                          | HV                         | pc/h/ln                                                                             |
| 8                                                                                                                  | 70.0                  | mph              | S P                                                                                                                                                                |                            | mph                                                                                 |
| $D = v_p / S$                                                                                                      | 13.0                  | pc/mi/ln         | $D = v_p / S$                                                                                                                                                      |                            | pc/mi/ln                                                                            |
| OS                                                                                                                 | В                     |                  | Required Number of Lanes                                                                                                                                           | , N                        | poman                                                                               |
| Glossary                                                                                                           |                       |                  | Factor Location                                                                                                                                                    |                            |                                                                                     |
| N - Number of lanes  / - Hourly volume  /p - Flow rate  .OS - Level of service  speed  DDHV - Directional design h | BFFS - Bas            |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                            | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

|                                                                                       | BASIC FR                | EEWAY SE         | GMENTS WORKSHEE                                                                                                                                                    | : 1                      |                                                                                     |
|---------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|
| General Information                                                                   |                         |                  | Site Information                                                                                                                                                   |                          |                                                                                     |
| Analyst                                                                               |                         |                  | Highway/Direction of Trave                                                                                                                                         |                          |                                                                                     |
| Agency or Company                                                                     | URS                     |                  | From/To                                                                                                                                                            |                          | -Ramp/ EW Slip                                                                      |
| Date Performed<br>Analysis Time Period                                                | 10/6/2014<br>PM         |                  | Jurisdiction<br>Analysis Year                                                                                                                                      | Ramp<br>Hillsbor<br>2040 | rough County                                                                        |
| Project Description East-                                                             | Vest Road               |                  |                                                                                                                                                                    |                          |                                                                                     |
| ☑ Oper.(LOS)                                                                          |                         | ات ا             | es.(N)                                                                                                                                                             | l Pla                    | nning Data                                                                          |
| Flow Inputs                                                                           |                         |                  |                                                                                                                                                                    |                          |                                                                                     |
| Volume, V<br>AADT                                                                     | 1270                    | veh/h<br>veh/day | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub>                                                                                                         | 0.92<br>0                |                                                                                     |
| Peak-Hr Prop. of AADT, K<br>Peak-Hr Direction Prop, D<br>DDHV = AADT x K x D          |                         | veh/h            | %RVs, P <sub>R</sub> General Terrain: Grade % Length Up/Down %                                                                                                     | 0<br>Level<br>mi         |                                                                                     |
| Calculate Flow Adjus                                                                  | tments                  |                  |                                                                                                                                                                    |                          |                                                                                     |
| fp                                                                                    | 1.00                    |                  | E <sub>R</sub>                                                                                                                                                     | 1.2                      |                                                                                     |
| E <sub>T</sub>                                                                        | 1.5                     |                  | $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                                       | )] 1.000                 |                                                                                     |
| Speed Inputs                                                                          |                         |                  | Calc Speed Adj and                                                                                                                                                 | FFS                      |                                                                                     |
| Lane Width                                                                            |                         | ft               |                                                                                                                                                                    |                          |                                                                                     |
| Rt-Side Lat. Clearance                                                                |                         | ft               | f <sub>LW</sub>                                                                                                                                                    |                          | mph                                                                                 |
| Number of Lanes, N                                                                    | 2                       |                  | f <sub>LC</sub>                                                                                                                                                    |                          | mph                                                                                 |
| Total Ramp Density, TRD                                                               |                         | ramps/mi         | TRD Adjustment                                                                                                                                                     |                          | mph                                                                                 |
| FFS (measured)                                                                        | 70.0                    | mph              | FFS                                                                                                                                                                | 70.0                     | mph                                                                                 |
| Base free-flow Speed,<br>BFFS                                                         |                         | mph              |                                                                                                                                                                    |                          |                                                                                     |
| LOS and Performance                                                                   | e Measures              |                  | Design (N)                                                                                                                                                         |                          |                                                                                     |
| Operational (LOS)<br>v <sub>p</sub> = (V or DDHV) / (PHF x N                          | l x f <sub>HV</sub> 690 | pc/h/ln          | Design (N) Design LOS v <sub>p</sub> = (V or DDHV) / (PHF x                                                                                                        | N x f <sub>HV</sub>      | no Palla                                                                            |
| x f <sub>p</sub> )                                                                    | 70.0                    |                  | x f <sub>p</sub> )                                                                                                                                                 |                          | pc/h/in                                                                             |
| S / 6                                                                                 | 70.0                    | mph              | s *                                                                                                                                                                |                          | mph                                                                                 |
| D = v <sub>p</sub> / S                                                                | 9.9                     | pc/mi/ln         | $D = v_p / S$                                                                                                                                                      |                          | pc/mi/ln                                                                            |
| LOS                                                                                   | Α                       |                  | Required Number of Lanes                                                                                                                                           | s, N                     |                                                                                     |
| Glossary                                                                              |                         |                  | Factor Location                                                                                                                                                    |                          |                                                                                     |
| N - Number of lanes  / - Hourly volume  /p - Flow rate  _OS - Level of service  speed |                         |                  | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 |                          | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-1 |

HCS 2010<sup>TM</sup> Version 6.50

|                                                                                                                           | BASIC FR               | EEWAY SE                           | GMENTS WORKSHEE                                                                                                                                                    | T                             |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|
| General Information                                                                                                       |                        |                                    | Site Information                                                                                                                                                   |                               |                                                                                      |
| Analyst<br>Agency or Company<br>Date Performed<br>Analysis Time Period                                                    | URS<br>10/6/2014<br>PM |                                    | Highway/Direction of Trave<br>From/To<br>Jurisdiction<br>Analysis Year                                                                                             | EW Slip                       | xpress/SB<br>o Ramp/Bearss Ave<br>roough County                                      |
| Project Description East-                                                                                                 |                        |                                    | Des.(N)                                                                                                                                                            |                               | nning Data                                                                           |
| ✓ Oper.(LOS)                                                                                                              |                        |                                    | 7C5.(N)                                                                                                                                                            | 1 1 161                       | ming Data                                                                            |
| Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D                         | 2560                   | veh/h<br>veh/day<br>veh/h          | Peak-Hour Factor, PHF<br>%Trucks and Buses, P <sub>T</sub><br>%RVs, P <sub>R</sub><br>General Terrain:<br>Grade % Length<br>Up/Down %                              | 0.92<br>0<br>0<br>Level<br>mi |                                                                                      |
| Calculate Flow Adjus                                                                                                      | tments                 |                                    |                                                                                                                                                                    |                               |                                                                                      |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                          | 1.00<br>1.5            |                                    | $E_R$<br>$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$                                                                                                              | 1.2<br>1)] 1.000              |                                                                                      |
| Speed Inputs                                                                                                              |                        |                                    | Calc Speed Adj and                                                                                                                                                 | FFS                           |                                                                                      |
| Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS    | 2<br>70.0              | ft<br>ft<br>ramps/mi<br>mph<br>mph | f <sub>LW</sub> f <sub>LC</sub> TRD Adjustment FFS                                                                                                                 | 70.0                          | mph<br>mph<br>mph<br>mph                                                             |
| LOS and Performanc                                                                                                        | e Measures             | i                                  | Design (N)                                                                                                                                                         |                               |                                                                                      |
| Operational (LOS)  v <sub>p</sub> = (V or DDHV) / (PHF x ) x f <sub>p</sub> ) S D = v <sub>p</sub> / S LOS                |                        | pc/h/ln<br>mph<br>pc/mi/ln         | Design (N) Design LOS  v <sub>p</sub> = (V or DDHV) / (PHF x  x f <sub>p</sub> ) S D = v <sub>p</sub> / S Required Number of Lane                                  |                               | pc/h/in<br>mph<br>pc/mi/in                                                           |
| Glossary                                                                                                                  |                        |                                    | Factor Location                                                                                                                                                    |                               |                                                                                      |
| N - Number of lanes V - Hourly volume v <sub>p</sub> - Flow rate LOS - Level of service speed DDHV - Directional design l | BFFS - Ba              |                                    | E <sub>R</sub> - Exhibits 11-10, 11-12<br>E <sub>T</sub> - Exhibits 11-10, 11-11,<br>f <sub>p</sub> - Page 11-18<br>LOS, S, FFS, v <sub>p</sub> - Exhibits<br>11-3 | 11-13                         | f <sub>LW</sub> - Exhibit 11-8<br>f <sub>LC</sub> - Exhibit 11-9<br>TRD - Page 11-11 |

HCS 2010<sup>TM</sup> Version 6.50

## I-275 2040 AM-PM Peak Hour HCS Merge-Diverge Analysis

| General Info                                 | rmation                      | 10 (1)11                 | S AND RAN                    | Site Info        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     |                     |                                    |
|----------------------------------------------|------------------------------|--------------------------|------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|-----------------------------------------------------|---------------------|------------------------------------|
|                                              |                              |                          | E                            | reeway/Dir of T  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1275/N             | 0                        |                                                     |                     |                                    |
| Analyst<br>Agency or Compan                  | URS                          |                          |                              | ieeway/Diff of 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          | of E-W (1)                                          |                     |                                    |
| agency or Compan<br>Date Performed           |                              | /2014                    |                              | arisdiction      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | e to EL, 3.<br>rough Cou |                                                     |                     |                                    |
| ale Fellonneo<br>Analysis Time Perio         |                              | 2014                     |                              | nalysis Year     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2040               | nough coo                | iity                                                |                     |                                    |
| Project Description                          |                              | ad                       | ^                            | naiyaia reai     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2040               |                          |                                                     |                     |                                    |
| nputs                                        | Edst-West No                 | au                       |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     |                     |                                    |
|                                              |                              | Ezopuray Muza            | ber of Lanes, N              | 3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     |                     |                                    |
| Upstream Adj l                               | Ramp                         | 1 '                      |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | Downstrea<br>Ramp   | am Adj                             |
| ┌ Yes 「                                      | - 00                         | Ramp Numbe               |                              | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | Manib               |                                    |
| i tes i                                      | Oli                          | Acceleration L           | ane Length, L <sub>A</sub>   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | □ Yes               | ∏ On                               |
| ₹ No I                                       | Off                          | Deceteration I           | ane Length L <sub>D</sub>    | 700              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | IF No               | □ O#                               |
|                                              | <i>~</i> "                   | Freeway Volu             | me, V <sub>e</sub>           | 1430             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     |                     | , Оп                               |
| £ up =                                       | ft                           | Ramp Volume              | . V <sub>0</sub>             | 140              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | L <sub>down</sub> ∺ | ft                                 |
| op.                                          |                              |                          | -Flow Speed, S <sub>ee</sub> | 70.0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | E                   |                                    |
| V <sub>u</sub> = \                           | /eh/h                        |                          |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     | V <sub>D</sub> =    | veh/h                              |
|                                              | 12 12                        |                          | ow Speed, S <sub>FR</sub>    | 55.0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     |                     |                                    |
| Conversion                                   | T                            | der Base                 | Conditions                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | - 1                      |                                                     |                     |                                    |
| (pc/h)                                       | (Veh/hr)                     | PHF                      | Terrain                      | %Truck           | %Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | f <sub>HV</sub>          | fp                                                  | v = V/PHF           | x f <sub>HV</sub> x f <sub>r</sub> |
| reeway                                       | 1430                         | 0.92                     | Level                        | 3                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                  | .985                     | 1.00                                                | 16                  | 78                                 |
|                                              | 140                          | 0.92                     | Level                        | 0                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                  | .000                     | 1.00                                                |                     | 52                                 |
| Ramp<br>JpStream                             | 140                          | 0.92                     | revei                        | , v              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +-                 | .000                     | 1.00                                                |                     | JA                                 |
| DownStream                                   | <u> </u>                     |                          |                              |                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                  |                          | -                                                   |                     |                                    |
| JOMII GOGGIII                                | !                            | Merge Areas              |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          | Diverge Areas                                       |                     |                                    |
| stimation o                                  |                              | and go through           |                              |                  | Estimati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ion c              |                          |                                                     |                     |                                    |
|                                              |                              | (D)                      |                              |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                          |                                                     | ١m                  |                                    |
|                                              | $V_{12} = V_{p}$             | 7 117                    |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1                        | = V <sub>R</sub> + (V <sub>F</sub> - V <sub>I</sub> |                     |                                    |
| EQ =                                         | (Equa                        | tion 13-6 or             | 13-7)                        |                  | LEO =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | (                        | Equation 13-1                                       | 2 or 13-13          | )                                  |
| FM <sup>±</sup>                              | using                        | Equation (E              | xhibit 13-6)                 |                  | P <sub>FD</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 0.                       | 714 using Eq                                        | uation (Exhi        | bit 13-7)                          |
| 12 =                                         | pc/h                         |                          |                              |                  | V <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1                        | 170 pc/h                                            |                     |                                    |
| 3 or V <sub>av34</sub>                       | pc/h (                       | Equation 13              | 14 or 13-17)                 |                  | V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 41                       | 08 pc/h (Equa                                       | tion 13-14          | or 13-17                           |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,70 |                              |                          | ,                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 2.7              |                          | Yes 🗸 No                                            |                     |                                    |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5  |                              |                          |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          | Yes ₹ No                                            |                     |                                    |
|                                              |                              |                          | 16, 13-18, or                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          | oc/h (Equation                                      | 13-16-13-           | .18 or 13                          |
| Yes,V <sub>12a</sub> =                       | 13-19)                       |                          | 10, 10-10, 01                |                  | If Yes,V <sub>12a</sub> ≖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                  |                          | 9)                                                  | 10 10, 10           | 10,0110                            |
| Capacity Che                                 |                              |                          |                              |                  | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y Ch               | ecks                     | ***                                                 |                     |                                    |
|                                              | Actual                       | С                        | apacity                      | LOS F?           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Actual                   | Ca                                                  | pacity              | LOS F                              |
|                                              |                              |                          |                              |                  | V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 1578                     | Exhibit 13-8                                        | 7200                | No                                 |
| 1/                                           |                              | Exhibit 13-8             |                              |                  | $V_{FO} = V_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V.                 | 1426                     | Exhibit 13-8                                        | 7200                | No                                 |
| $V_{FO}$                                     |                              | EXIMUL 13-0              |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v R                |                          |                                                     |                     | _                                  |
|                                              | <u> </u>                     |                          |                              |                  | V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 152                      | Exhibit 13-1                                        |                     | No                                 |
| low Enterin                                  | g Merge In                   | ***                      |                              |                  | Flow En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  |                          | rge influen                                         |                     |                                    |
|                                              | Actual                       | · ·                      | Desirable                    | Violation?       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | Actual                   | Max Desirat                                         |                     | Violation                          |
| V <sub>R12</sub>                             |                              | Exhibit 13-8             |                              |                  | V <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1170                     | Exhibit 13-8                                        | 4400:All            | No                                 |
| evel of Serv                                 | rice Detern                  | nination (i              | f not F)                     |                  | Level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sen                | ∕ice De                  | terminatio                                          | n (if not i         | F)                                 |
| D <sub>p</sub> = 5.475 + 0                   | .00734 v <sub>p</sub> + (    | 0.0078 V <sub>12</sub> - | 0.00627 L <sub>A</sub>       |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) <sub>R</sub> = 4 | .252 + 0                 | .0086 V <sub>12</sub> - 0.                          | 009 L <sub>D</sub>  |                                    |
| <sub>R</sub> = (pc/mi/lr                     |                              | 12                       |                              |                  | D <sub>R</sub> = 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>5 (pc/r        | ni/ln)                   | ***                                                 |                     |                                    |
| • •                                          |                              |                          |                              |                  | The state of the s |                    | oit 13-2)                |                                                     |                     |                                    |
| OS = (Exhibit                                |                              |                          |                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |                                                     |                     |                                    |
| peed Deteri                                  | nination                     |                          |                              |                  | Speed D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                          |                                                     |                     |                                    |
| s = (Exibit 1                                | 3-11)                        |                          |                              |                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | xhibit 13                | -                                                   |                     |                                    |
| -                                            | nibit 13-11)                 |                          |                              |                  | S <sub>R</sub> = 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .9 mph             | (Exhibit                 | 13-12)                                              |                     |                                    |
|                                              |                              |                          |                              |                  | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                          |                                                     |                     |                                    |
|                                              | ibit 13-111                  |                          |                              |                  | $S_0 = 76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .8 mph             | (Exhibit                 | 13-12)                                              |                     |                                    |
| mph (Ext                                     | nibit 13-11)<br>nibit 13-13) |                          |                              |                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | (Exhibit<br>(Exhibit     | -                                                   |                     |                                    |

|                                               | RA                               | MPS AND             | RAMP JUN                                | CTIONS W                                | ORKSH                                             | EET                                 | 6                        |                                                                     |                   |                                    |
|-----------------------------------------------|----------------------------------|---------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------|-------------------------------------|--------------------------|---------------------------------------------------------------------|-------------------|------------------------------------|
| General Info                                  | rmation                          |                     |                                         | Site Infor                              | mation                                            |                                     |                          |                                                                     |                   |                                    |
| Analyst<br>Agency or Compan<br>Date Performed | 10/7/                            | 2014                | Ju<br>Ju                                | eeway/Dir of Tr<br>nction<br>risdiction | Express Terminus N. of EW (3) Hillsborough County |                                     |                          |                                                                     |                   |                                    |
| inalysis Time Perio                           |                                  |                     | Ar                                      | nalysis Year                            |                                                   | 2040                                |                          |                                                                     |                   |                                    |
| Project Description                           | East-West Roa                    | ad                  |                                         |                                         |                                                   | _                                   |                          |                                                                     |                   |                                    |
| nputs                                         |                                  | le                  | b (1) M                                 |                                         |                                                   | _                                   |                          |                                                                     |                   |                                    |
| Jpstream Adj Ram                              | p                                | Ramp Numbe          | ber of Lanes, N                         | 3<br>†                                  |                                                   |                                     |                          |                                                                     | Downstrea<br>Ramp | am Ađj                             |
| ⊏Yes ΓO                                       | n                                |                     | ane Length, L <sub>A</sub>              | 1100                                    |                                                   |                                     |                          |                                                                     | ΓYes              | □On                                |
| FNo FO                                        | ff                               | I                   | Lane Length L <sub>D</sub>              |                                         |                                                   |                                     |                          |                                                                     | ₽ No              | □ Off                              |
|                                               |                                  | Freeway Volu        |                                         | 1290                                    |                                                   |                                     |                          |                                                                     | rqowo =           | ft                                 |
| up = ft                                       |                                  | Ramp Volume         | • • • • • • • • • • • • • • • • • • • • | 630                                     |                                                   |                                     |                          |                                                                     | gowu              | **                                 |
| /u = veh/                                     | h                                |                     | -Flow Speed, S <sub>FF</sub>            | 70.0<br>55.0                            |                                                   |                                     |                          | 1                                                                   | V <sub>D</sub> =  | veh/h                              |
| Conversion                                    | to nc/h line                     |                     | ow Speed, S <sub>FR</sub>               | 55.0                                    |                                                   |                                     |                          |                                                                     |                   |                                    |
| (pc/h)                                        | V                                | PHF                 | Terrain                                 | %Truck                                  | %Rv                                               | Ĭ                                   | f <sub>HV</sub>          | f <sub>p</sub>                                                      | v = V/PHF         | x f <sub>HV</sub> x f <sub>n</sub> |
| Freeway                                       | (Veħ/hr)<br>1290                 | 0.92                | Level                                   | 3                                       | 0                                                 | + (                                 | 0.985                    | 1.00                                                                | 1                 | 423                                |
| Ramp                                          | 630                              | 0.92                | Level                                   | 0                                       | 0                                                 |                                     | 1.000                    | 1.00                                                                |                   | 385                                |
| UpStream                                      |                                  |                     |                                         |                                         |                                                   |                                     |                          |                                                                     |                   |                                    |
| DownStream                                    |                                  | Merge Areas         |                                         |                                         |                                                   | 1_                                  | <u>l</u>                 | iverge Areas                                                        |                   |                                    |
| stimation o                                   |                                  | Mei As Wiss         |                                         |                                         | Estimati                                          | on                                  |                          | ITCING AIGUS                                                        |                   |                                    |
|                                               | V <sub>12</sub> = V <sub>F</sub> | (P <sub>r+</sub> ,) |                                         |                                         |                                                   |                                     |                          | L LOL M                                                             | \O                |                                    |
| EQ =                                          | ,,                               | ation 13-6 or       | 13-7)                                   |                                         |                                                   |                                     |                          | / <sub>R</sub> + (V <sub>F</sub> - V <sub>R</sub> )<br>Equation 13- | ,                 | 3)                                 |
| FM =                                          |                                  |                     | ion (Exhibit 13-6)                      |                                         | L <sub>EQ</sub> =<br>P <sub>FD</sub> =            |                                     |                          | sing Equation                                                       |                   |                                    |
| 12 =                                          | 866 p                            | c/h                 |                                         |                                         | V <sub>12</sub> =                                 |                                     |                          | c/h                                                                 | TT (EMILION TO    | 1                                  |
| or V <sub>av34</sub>                          |                                  | c/h (Equatio        | n 13-14 or 13-                          |                                         | V <sub>3</sub> or V <sub>av34</sub>               |                                     | ,                        | c/h (Equation 1                                                     | 3-14 or 13-1      | 7)                                 |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,7   | 17)<br>00 oc/b2 ⊏ ∨o             | o DZ Mo             |                                         |                                         |                                                   | <sub>a</sub> > 2,                   |                          | Yes □ No                                                            |                   | •                                  |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5   |                                  |                     |                                         |                                         |                                                   |                                     | 5 * V <sub>12</sub> /2 [ | Yes ☐ No                                                            |                   |                                    |
| Yes,V <sub>12a</sub> =                        |                                  | c/h (Equatio        | n 13-16, 13-18,                         |                                         | If Yes,V <sub>12a</sub> =                         |                                     |                          | c/h (Equatior<br>-19)                                               | n 13-16, 13       | 3-18, or                           |
| Capacity Ch                                   |                                  | 10)                 |                                         |                                         | Capacity                                          | / Cł                                | iecks                    |                                                                     |                   |                                    |
|                                               | Actual                           | C                   | apacity                                 | LOS F?                                  |                                                   |                                     | Actual                   |                                                                     | acity             | LOS F?                             |
|                                               |                                  |                     |                                         |                                         | V <sub>F</sub>                                    |                                     |                          | Exhibit 13-8                                                        | -                 |                                    |
| $V_{FO}$                                      | 2108                             | Exhibit 13-8        |                                         | No                                      | $V_{FO} = V_F$                                    | - V <sub>R</sub>                    |                          | Exhibit 13-8                                                        |                   |                                    |
|                                               |                                  |                     |                                         |                                         | V <sub>R</sub>                                    |                                     |                          | Exhibit 13-<br>10                                                   |                   |                                    |
| low Enterin                                   | g Merge In                       | fluence A           | rea                                     |                                         | Flow En                                           | teri                                | ng Diver                 | ge Influen                                                          | ce Area           | 1                                  |
|                                               | Actual                           | Max                 | Desirable                               | Violation?                              |                                                   |                                     | Actual                   | Max Desi                                                            | rable             | Violation?                         |
| V <sub>R12</sub>                              | 1654                             | Exhibit 13-8        | 4600:All                                | No                                      | V <sub>12</sub>                                   | Ť                                   | D :                      | Exhibit 13-8                                                        | - /!E 4           | <i>p</i> -1                        |
| evel of Serv                                  |                                  |                     |                                         |                                         | -                                                 |                                     |                          | <b>erminatio</b><br>0086 V <sub>12</sub> - 0.                       |                   | F)                                 |
|                                               | 0.00734 v <sub>R</sub> + 0       |                     | 10021 LA                                |                                         | i.                                                | <sup>z</sup> R <sup></sup><br>c/mi/ |                          | 712 ° 0.                                                            | 000 ED            |                                    |
| <sub>R</sub> = 11.2 (pc/n<br>OS = B (Exhibit  |                                  |                     |                                         |                                         |                                                   |                                     | it 13-2)                 |                                                                     |                   |                                    |
| Speed Deteri                                  |                                  |                     |                                         |                                         | Speed D                                           |                                     |                          | n                                                                   |                   |                                    |
|                                               |                                  |                     |                                         |                                         |                                                   |                                     | 13-12)                   | 100                                                                 |                   |                                    |
|                                               | (Exhibit 13-11)                  |                     |                                         |                                         |                                                   |                                     | hibil 13-12)             |                                                                     |                   |                                    |
|                                               | (Exhibit 13-11)                  |                     |                                         |                                         | 11                                                | -                                   | hibil 13-12)             |                                                                     |                   |                                    |
| ,                                             | (Exhibit 13-13)                  |                     |                                         |                                         | ľ                                                 |                                     | hibit 13-13)             |                                                                     |                   |                                    |
| right © 2013 Univer                           |                                  | Riohis Reserved     | 3                                       |                                         | HCS2010 <sup>TM</sup>                             | Versi                               | ion 6.50                 | (                                                                   | Generated: 10     | 3/16/2014 3:                       |

| Conoral Info                                 | rmation                                            | CAMIL                    | S AND RAM                    | Site Infor             | The second section is a second             | , itic                                  |                   |                                                     |                     |                        |
|----------------------------------------------|----------------------------------------------------|--------------------------|------------------------------|------------------------|--------------------------------------------|-----------------------------------------|-------------------|-----------------------------------------------------|---------------------|------------------------|
| General Info                                 |                                                    |                          |                              |                        |                                            | 10254                                   | n                 |                                                     |                     |                        |
| Analyst                                      | URS                                                |                          |                              | reeway/Dir of Ti       |                                            | 1275/N                                  | _                 | of E 1M Dd /4                                       |                     |                        |
| lgency or Compan<br>Date Performed           |                                                    | 10044                    |                              | unction<br>urisdiction |                                            | -                                       |                   | of E-W Rd (1                                        |                     |                        |
| vate Perionned<br>Analysis Time Perio        |                                                    |                          |                              |                        |                                            | 2040                                    | rough Cou         | шку                                                 |                     |                        |
| Project Description                          |                                                    | ad                       | ^                            | naiysis rear           |                                            | 2040                                    |                   |                                                     |                     |                        |
| nputs                                        | Easi-West No                                       | du                       |                              |                        |                                            |                                         |                   |                                                     |                     |                        |
| nputs                                        |                                                    | [                        | han af hanna bi              |                        |                                            |                                         |                   |                                                     | i -                 |                        |
| Upstream Adj I                               | Ramp                                               | 1 '                      | ber of Lanes, N              | 3                      |                                            |                                         |                   |                                                     | Downstre            | am Adj                 |
|                                              | - 0.                                               | Ramp Numbe               | r of Lanes, N                | 1                      |                                            |                                         |                   |                                                     | Ramp                |                        |
| □Yes [                                       | On                                                 | Acceleration t           | ane Length, L <sub>A</sub>   |                        |                                            |                                         |                   |                                                     | ┌ Yes               | □ On                   |
| ENA 8                                        | ► No 1 Off Deceleration Lane Length L <sub>0</sub> |                          |                              |                        |                                            |                                         |                   |                                                     | [ N:                | Г о″                   |
| 7 140                                        | Ott                                                | Freeway Volu             | me. V <sub>e</sub>           | 5590                   |                                            |                                         |                   |                                                     | I No                | □ Off                  |
| L <sub>up</sub> =                            | ft                                                 | Ramp Volume              |                              | 790                    |                                            |                                         |                   |                                                     | L <sub>down</sub> = | ft                     |
| ··up                                         |                                                    |                          | • • •                        |                        |                                            |                                         |                   |                                                     |                     |                        |
| V,, = \(\sqrt{1}\)                           | /eh/h                                              | l.                       | -Flow Speed, S <sub>FF</sub> | 70.0                   |                                            |                                         |                   |                                                     | V <sub>D</sub> =    | veh/h                  |
|                                              |                                                    | Ramp Free-F              | ow Speed, S <sub>FR</sub>    | 55.0                   |                                            |                                         |                   |                                                     |                     |                        |
| Conversion                                   | to pc/h Un                                         | der Base                 | Conditions                   |                        |                                            |                                         |                   |                                                     |                     |                        |
| (pc/h)                                       | V V                                                | PHF                      | Terrain                      | %Truck                 | %Rv                                        |                                         | f <sub>HV</sub>   | fp                                                  | v = V/PHF           | x f <sub>av</sub> x f. |
|                                              | (Veh/hr)                                           | -                        |                              |                        |                                            |                                         |                   |                                                     |                     |                        |
| reeway                                       | 5590                                               | 0.92                     | Level                        | 3                      | 0                                          |                                         | .985              | 1.00                                                |                     | 167                    |
| Ramp                                         | 790                                                | 0.92                     | Level                        | 0                      | 0                                          | 1.                                      | .000              | 1.00                                                | 8                   | 59                     |
| JpStream                                     |                                                    |                          |                              |                        |                                            | +-                                      |                   |                                                     |                     |                        |
| DownStream                                   | <u> </u>                                           | Marga Araga              |                              |                        |                                            |                                         |                   | I<br>Diverge Areas                                  |                     |                        |
| etimatian a                                  |                                                    | Merge Areas              |                              |                        | Estimati                                   | ion c                                   |                   | Diverge Areas                                       |                     |                        |
| stimation o                                  | 1 12                                               |                          |                              |                        | Lauman                                     | 1011 0                                  |                   |                                                     |                     |                        |
|                                              | V <sub>12</sub> = V <sub>F</sub>                   | (P <sub>EM</sub> )       |                              |                        |                                            |                                         | V <sub>12</sub> = | = V <sub>R</sub> + (V <sub>F</sub> - V <sub>I</sub> | R)PFD               |                        |
| EQ =                                         | (Equa                                              | ition 13-6 or            | 13-7)                        |                        | L <sub>EQ</sub> =                          |                                         | (                 | Equation 13-1                                       | 2 or 13-13          | 3)                     |
| <br>FM =                                     | usina                                              | Equation (6              | xhibit 13-6)                 |                        | P <sub>F0</sub> =                          |                                         | 0                 | .566 using Eq                                       | uation (Exh         | ibit 13-7)             |
| 12 =                                         | pc/h                                               |                          | ,                            |                        | V <sub>12</sub> =                          |                                         |                   | 865 pc/h                                            | ,                   | •                      |
| <sub>3</sub> or V <sub>av34</sub>            | •                                                  | Earration 12             | -14 or 13-17)                |                        | V <sub>3</sub> or V <sub>av34</sub>        |                                         |                   | 302 pc/h (Equ                                       | ation 13.1          | 4 or 12.17             |
|                                              |                                                    |                          | -14 01 13-17)                |                        |                                            | - 07                                    |                   | , , ,                                               | ation 10-1          | 4 07 13-17             |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,76 |                                                    |                          |                              |                        |                                            |                                         |                   | Yes F No                                            |                     |                        |
| $V_3 \text{ or } V_{av34} > 1.5$             |                                                    |                          |                              |                        | Is V <sub>3</sub> or V <sub>av3</sub>      | 34 > 1.5                                |                   | Yes ₹ No                                            | 40 40 40            |                        |
| Yes,V <sub>12a</sub> =                       |                                                    |                          | -16, 13-18, or               |                        | If Yes,V <sub>12a</sub> =                  | :                                       |                   | oc/h (Equation<br>9)                                | 13-16, 13           | -18, or 13             |
| Capacity Che                                 | 13-19)                                             |                          |                              |                        | Capacity                                   |                                         |                   | <del>3</del> )                                      |                     |                        |
| apacity Cire                                 | v                                                  | T c                      | anasih.                      | T 100.00               | Capacit                                    | 011                                     |                   | Co                                                  | pacity              | LOSF                   |
|                                              | Actual                                             | <del>l ĭ</del>           | apacity                      | LOS F?                 | - 1/                                       | _                                       | Actual            |                                                     | -                   | 1                      |
|                                              |                                                    |                          |                              |                        | V <sub>F</sub>                             |                                         | 6167              | Exhibit 13-8                                        |                     | No                     |
| V <sub>FO</sub>                              |                                                    | Exhibit 13-8             |                              | 1                      | $V_{FO} = V_{F}$                           | -V <sub>R</sub>                         | 5308              | Exhibit 13-8                                        | 7200                | No                     |
|                                              |                                                    |                          |                              | 1                      | V <sub>R</sub>                             |                                         | 859               | Exhibit 13-1                                        | 0 2200              | No                     |
| low Entering                                 | a Merae In                                         | fluence A                | rea                          |                        | Flow En                                    | terin                                   | a Dive            | rge Influen                                         | ce Area             |                        |
|                                              | Actual                                             |                          | Desirable                    | Violation?             |                                            |                                         | Actual            | Max Desirat                                         |                     | Violation              |
| V <sub>R12</sub>                             |                                                    | Exhibit 13-8             |                              |                        | V <sub>12</sub>                            | _                                       | 3865              | Exhibit 13-8                                        | 4400:All            | No                     |
| evel of Serv                                 | ico Dotore                                         |                          | f not El                     |                        |                                            |                                         |                   | terminatio                                          |                     |                        |
|                                              |                                                    |                          |                              |                        |                                            |                                         |                   |                                                     |                     | 17                     |
| $D_R = 5.475 \pm 0$                          | , ,                                                | 0.0078 V <sub>12</sub> = | 0.00827 LA                   |                        | le .                                       | • • • • • • • • • • • • • • • • • • • • |                   | .0086 V <sub>12</sub> - 0.                          | noa rD              |                        |
| <sub>R</sub> = (pc/mi//r                     | 1)                                                 |                          |                              |                        | D <sub>R</sub> = 34                        | .7 (pc                                  | /mi/ln)           |                                                     |                     |                        |
| OS = (Exhibit                                | 13-2)                                              |                          |                              |                        | LOS = D                                    | (Exhil                                  | oit 13-2)         |                                                     |                     |                        |
| peed Deterr                                  | nination                                           |                          |                              |                        | Speed D                                    | eter                                    | minatio           | on                                                  |                     |                        |
|                                              |                                                    |                          |                              |                        |                                            |                                         | xhibit 13         |                                                     |                     |                        |
| s = (Exibit 1                                | •                                                  |                          |                              |                        | 200                                        |                                         |                   |                                                     |                     |                        |
| S <sub>R</sub> = mph (Exhibit 13-11)         |                                                    |                          |                              |                        | \$ <sub>R</sub> = 63.1 mph (Exhibit 13-12) |                                         |                   |                                                     |                     |                        |
| •                                            | -                                                  |                          |                              |                        | D                                          |                                         | A Pref            | 44 4A1                                              |                     |                        |
| ,≖ mph (Exf                                  | nibit 13-11)<br>nibit 13-13)                       |                          |                              |                        | l *                                        |                                         | (Exhibit (Exhibit |                                                     |                     |                        |

| 0                                           |                                                       | AWIPS AND      | RAMP JUN                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EET                                                   |                             |                     |                                   |
|---------------------------------------------|-------------------------------------------------------|----------------|-----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|---------------------|-----------------------------------|
| General Info                                | ormation                                              |                |                             | 115.255555    | rmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                             |                     |                                   |
| Analyst                                     |                                                       |                |                             | reeway/Dir of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-275 General I                                       |                             |                     |                                   |
| Agericy or Compa<br>Date Performed          | •                                                     | -              |                             | unction       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | ous N. of EW (3)            |                     |                                   |
| Date Perionileu<br>Analysis Time Per        |                                                       | 7/2014         |                             | urisdiction   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hillsborough Co                                       | ounty                       |                     |                                   |
| Project Description                         |                                                       |                | <i>P</i>                    | inalysis Year |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2040                                                  |                             |                     |                                   |
| Inputs                                      | Last-West No                                          | 000            |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
|                                             |                                                       | Freeway Nun    | nber of Lanes, N            | 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             | r                   |                                   |
| Upstream Adj Ran                            | ıp                                                    |                |                             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             | Downstr             | eam Adj                           |
| ΓYes Γ                                      | )n                                                    |                | er of Lanes, N              | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             | Ramp                |                                   |
|                                             |                                                       |                | Lane Length, L <sub>A</sub> | 1100          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                             | ⊢ Yes               | ∏ On                              |
| F No F (                                    | Off                                                   |                | Lane Length L <sub>o</sub>  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             | ⊮ No                | □Off                              |
|                                             |                                                       | Freeway Volu   | ime, V <sub>F</sub>         | 4800          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
| <sub>-up</sub> = ft                         |                                                       | Ramp Volume    | e, V <sub>R</sub>           | 1000          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             | L <sub>down</sub> = | ft                                |
|                                             |                                                       | Freeway Free   | Flow Speed, See             | 70.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
| √ <sub>ບ</sub> = veh                        | /h                                                    |                | low Speed, S <sub>FR</sub>  | 55.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             | V <sub>D</sub> =    | veh/h                             |
| Conversion                                  | to nc/h Hn                                            |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
|                                             | V V                                                   | T              |                             | Γ             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                     | Т —                         |                     |                                   |
| (pc/h)                                      | (Veh/hr)                                              | PHF            | Terrain                     | %Truck        | %Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>HV</sub>                                       | fp                          | v = V/PH            | Fxf <sub>HV</sub> xf <sub>t</sub> |
| Freeway                                     | 4800                                                  | 0.92           | Level                       | 3             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.985                                                 | 1.00                        |                     | 5296                              |
| Ramp                                        | 1000                                                  | 0.92           | Level                       | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.000                                                 | 1.00                        |                     | 1087                              |
| UpStream                                    |                                                       |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
| DownStream                                  |                                                       |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
|                                             |                                                       | Merge Areas    |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Diverge Areas               |                     |                                   |
| Estimation o                                | of v <sub>12</sub>                                    |                |                             |               | Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on of V <sub>12</sub>                                 |                             |                     |                                   |
|                                             | V <sub>12</sub> = V <sub>F</sub>                      | (Pess)         |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     |                                   |
| EQ <sup>=</sup>                             |                                                       | ation 13-6 or  | 13-7)                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>12</sub> =                                     | $V_R + (V_F - V_R)$         | , -                 |                                   |
| )<br>FM =                                   |                                                       |                | ion (Exhibit 13-6)          |               | L <sub>EQ</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | (Equation 13-               | 12 or 13-1          | 13)                               |
|                                             |                                                       |                | ion (Exhibit 13-6)          |               | P <sub>FO</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | using Equation              | n (Exhibit 1        | 3-7)                              |
| 12 =                                        | 3222                                                  | •              | n 40 44 + 40                |               | V <sub>12</sub> #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | pc/h                        |                     |                                   |
| 3 or V <sub>av34</sub>                      | 17)                                                   | pe/n (Equation | on 13-14 or 13-             |               | V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | pc/h (Equation 13           | 3-14 or 13-         | 17)                               |
| s V <sub>3</sub> or V <sub>av34</sub> > 2,7 |                                                       | s 🗁 No         |                             |               | Is V <sub>3</sub> or V <sub>av3d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > 2,700 pc/h?                                         | 「Yes □ No                   |                     |                                   |
| s V <sub>3</sub> or V <sub>av34</sub> > 1.5 |                                                       |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | □Yes □No                    |                     |                                   |
|                                             |                                                       |                | on 13-16, 13-               |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | pc/h (Equation              | : 13-16. 1          | 3-18. ог                          |
| Yes, V <sub>12a</sub> =                     |                                                       | 13-19)         | M1 10*10, 10-               |               | If Yes,V <sub>12a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | 3-19)                       |                     |                                   |
| Capacity Ch                                 |                                                       |                |                             |               | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Checks                                                |                             |                     |                                   |
|                                             | Actual                                                | Ca             | apacity                     | LOS F?        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actual                                                | Capa                        | acity               | LOS F?                            |
|                                             |                                                       |                | ake on colo                 |               | V <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | Exhibit 13-8                | T                   | 2001.                             |
| 17                                          |                                                       | C 10 3 40 0    |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                     | Exhibit 13-8                | <b>—</b>            | -                                 |
| $V_{FO}$                                    | 6383                                                  | Exhibit 13-8   |                             | No            | V <sub>FO</sub> = V <sub>F</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>∨</sup> R                                        |                             |                     |                                   |
|                                             |                                                       | 1 1            |                             |               | V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | Exhibit 13-<br>10           | 1                   | 1                                 |
| low Enterin                                 | a Merae In                                            | fluence A      | rea                         |               | Flow Ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erina Dive                                            | rge Influenc                | o Aros              |                                   |
|                                             | Actual                                                |                | esirable                    | Violation?    | 7007 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Actual                                                | Max Desira                  |                     | Violation?                        |
| V <sub>R12</sub>                            | 4695                                                  | Exhibit 13-8   | 4600:Afl                    | Yes           | V <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11010011                                              | Exhibit 13-8                | 30.0                | VIOIGIOIT:                        |
| evel of Serv                                | ice Detern                                            |                |                             | 1.00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sorvice De                                            | termination                 | lif not             | El                                |
|                                             | 0.00734 v <sub>R</sub> + 0                            |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                             |                     | <u>r)</u>                         |
|                                             | **                                                    | 12 0.00        | VOZI CA                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | .0086 V <sub>12</sub> - 0.0 | na r <sup>D</sup>   |                                   |
| = 34.7 (pc/n                                | _                                                     |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mi/ln)                                                |                             |                     |                                   |
| S = D (Exhibit                              |                                                       |                |                             |               | LOS = (Ext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hibit 13-2)                                           |                             |                     |                                   |
| peed Deteri                                 | nination                                              |                |                             |               | Speed De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | terminatio                                            | on                          |                     |                                   |
|                                             | bit 13-11)                                            |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ibit 13-12)                                           |                             |                     |                                   |
| = 0.627 (Exi                                | 14 17                                                 |                |                             |               | N. Control of the Con | •                                                     |                             |                     |                                   |
|                                             | (Exhibit 13-14)                                       |                |                             |               | o <sub>o</sub> = mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (EXhibit 13472)                                       |                             |                     |                                   |
| = 52.5 mph                                  | (Exhibit 13-11)                                       |                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Exhibit 13-12)                                       |                             |                     |                                   |
| = 52.5 mph<br>= 65.7 mph                    | (Exhibit 13-11)<br>(Exhibit 13-11)<br>(Exhibit 13-13) |                |                             |               | S <sub>o</sub> = mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Exhibit 13-12)<br>(Exhibit 13-12)<br>(Exhibit 13-13) |                             |                     |                                   |

| General Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     | ··· writtle   | RAMP JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site Infor      |                                                                        |                                                                                |                                        |                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|--|
| <i>General Intori</i><br>Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mation<br>URS                                                                       |               | Çr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eeway/Dir of Tr |                                                                        | 275/SB                                                                         |                                        |                                              |  |
| Analyst<br>Agency or Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6AU                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nction          |                                                                        | S. of E-W Rd. o                                                                | n RP fr. EL (6)                        |                                              |  |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/25/                                                                               | 2014          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | risdiction      |                                                                        | Hillsborough Co                                                                |                                        |                                              |  |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     | 4014          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nalysis Year    |                                                                        | 2040                                                                           | ,                                      |                                              |  |
| Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     | ad            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        |                                                                                |                                        |                                              |  |
| Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | 27.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        |                                                                                |                                        |                                              |  |
| Upstream Adj Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | Freeway Nur   | nber of Lanes, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3               |                                                                        |                                                                                |                                        | Downstream Adj                               |  |
| oponoum raj ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | Ramp Numbe    | er of Lanes, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |                                                                        |                                                                                |                                        | Ramp                                         |  |
| □Yes □On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     | Acceleration  | Lane Length, L <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 700             |                                                                        |                                                                                |                                        | FYes FOn                                     |  |
| ™ No □Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     | Deceleration  | Lane Length L <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                                        |                                                                                |                                        | I No L Off                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     | Freeway Volu  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4200            |                                                                        |                                                                                |                                        | L <sub>down</sub> = ft                       |  |
| <sub>-up</sub> = ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     | Ramp Volum    | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1140            |                                                                        |                                                                                |                                        | gown                                         |  |
| V <sub>u</sub> = veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | Freeway Free  | e-Flow Speed, S <sub>FF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0            |                                                                        |                                                                                |                                        | V <sub>D</sub> = veh/h                       |  |
| *u *G(3)31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     | Ramp Free-F   | tow Speed, S <sub>FR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.0            |                                                                        |                                                                                |                                        |                                              |  |
| Conversion to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pc/h Une                                                                            | der Base      | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                                        |                                                                                | ,                                      | ,                                            |  |
| (pc/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V<br>(Veh/hr)                                                                       | PHF           | Terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %Truck          | %Rv                                                                    | f <sub>HV</sub>                                                                | fp                                     | v = V/PHF x f <sub>HV</sub> x f <sub>p</sub> |  |
| Freeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4200                                                                                | 0.92          | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3               | 0                                                                      | 0.985                                                                          | 1.00                                   | 4634                                         |  |
| Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1140                                                                                | 0.92          | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0               | 0                                                                      | 1.000                                                                          | 1.00                                   | 1239                                         |  |
| UpStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        |                                                                                |                                        |                                              |  |
| DownStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        |                                                                                |                                        |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     | Merge Areas   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        |                                                                                | Diverge Areas                          |                                              |  |
| Estimation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>12</sub>                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Estimati                                                               | on of v <sub>12</sub>                                                          |                                        |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>12</sub> = V <sub>F</sub>                                                    | (Pou)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        | ν.                                                                             | = V <sub>R</sub> + (V <sub>F</sub> · V | /P                                           |  |
| L <sub>EQ</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | ation 13-6 o  | r 13-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                        | V 12                                                                           | **                                     | R/' FD<br>3-12 or 13-13)                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |               | tion (Exhibit 13-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | LEO ≅                                                                  |                                                                                | •                                      |                                              |  |
| P <sub>FM</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | •             | nore (Exhibit 15-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | P <sub>FD</sub> =                                                      |                                                                                | using Equat                            | ion (Exhibit 13-7)                           |  |
| V <sub>12</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2767                                                                                |               | 40 44 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | V <sub>12</sub> =                                                      |                                                                                | pc/h                                   |                                              |  |
| V <sub>3</sub> or V <sub>av34</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17)                                                                                 | pe/n (Equat   | ion 13-14 or 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | V <sub>3</sub> or V <sub>av34</sub>                                    |                                                                                |                                        | 13-14 or 13-17)                              |  |
| Is V <sub>3</sub> or V <sub>av34</sub> > 2,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     | s 17 No       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Is V <sub>3</sub> or V <sub>av3</sub>                                  | 4 > 2,700 pc/h?                                                                | □Yes □No                               |                                              |  |
| Is $V_3$ or $V_{av34} > 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Is V <sub>3</sub> or V <sub>av3</sub>                                  | > 1.5 * V <sub>12</sub> /2                                                     | □ Yes □ No                             |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |               | ion 13-16, 13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | If Yes,V <sub>12a</sub> =                                              |                                                                                | pc/h (Equati                           | on 13-16, 13-18, or                          |  |
| if Yes,V <sub>12a</sub> ≖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18, or                                                                              |               | 011 10-10, 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 1 1 30, 1 129                                                          |                                                                                | 13-19)                                 |                                              |  |
| Capacity Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Capacity                                                               | / Checks                                                                       |                                        |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actual                                                                              |               | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOS F?          | <b>"</b>                                                               | Actua                                                                          | i C                                    | apacity LOS F?                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ٧ <sub>۶</sub>                                                         |                                                                                | Exhibit 13                             | 3-8                                          |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F070                                                                                | E. 1.1.1.40.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ala.            | V <sub>FO</sub> = V <sub>F</sub>                                       | - V <sub>D</sub>                                                               | Exhibit 13                             | 3-8                                          |  |
| V <sub>FO</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5873                                                                                | Exhibit 13-8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No              |                                                                        |                                                                                | Exhibit 1                              |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | V <sub>R</sub>                                                         |                                                                                | 10                                     |                                              |  |
| Elow Entoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Merge In                                                                            | fluence A     | rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | Flow En                                                                | tering Div                                                                     | erge Influe                            | nce Area                                     |  |
| Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Actual                                                                              |               | Desirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Violation?      |                                                                        | Actual                                                                         | Max De                                 | sirable Violation                            |  |
| Flow Entering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     | Exhibit 13-8  | 4600:All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No              | V <sub>12</sub>                                                        |                                                                                | Exhibit 13-8                           |                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4338                                                                                |               | The state of the s | -               | Level of                                                               | Service D                                                                      | eterminati                             | on (if not F)                                |  |
| V <sub>R12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | nination      | if not F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | D <sub>B</sub> = 4.252 + 0.0086 V <sub>12</sub> - 0.009 L <sub>D</sub> |                                                                                |                                        |                                              |  |
| V <sub>R12</sub><br>Level of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce Detern                                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                        | $O_{R} = 4.252 +$                                                              | 0.0086 V <sub>12</sub> -               | 0.009 L <sub>D</sub>                         |  |
| V <sub>R12</sub><br><b>Level of Servi</b><br>D <sub>R</sub> = 5.475 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ice Detern<br>0.00734 v <sub>R</sub> + 0                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | I .                                                                    | **                                                                             | 0.0086 V <sub>12</sub> -               | 0.009 L <sub>D</sub>                         |  |
| V <sub>R12</sub> Level of Servi D <sub>R</sub> = 5.475 + 0 D <sub>R</sub> = 34.4 (pc/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i <b>ce Detern</b><br>0.00734 v <sub>R</sub> + (<br>/ln)                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | D <sub>R</sub> = (pr                                                   | c/mi/ln)                                                                       | 0.0086 V <sub>12</sub> -               | 0.909 L <sub>D</sub>                         |  |
| $V_{R12}$ Level of Servi $D_R = 5.475 + 0.00$ $D_R = 34.4 (pc/mi)$ LOS $= 0.00$ (Exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i <b>ce Detern</b><br>0.00734 v <sub>R</sub> + (<br>/ln)<br>13-2)                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | D <sub>R</sub> = (po<br>LOS = (E                                       | c/mi/ln)<br>xhibit 13-2)                                                       |                                        | 0.009 L <sub>D</sub>                         |  |
| V <sub>R12</sub> Level of Servi  D <sub>R</sub> = 5.475 + 0  D <sub>R</sub> = 34.4 (pc/mi  LOS = D (Exhibit of Speed Determine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ice Detern<br>0.00734 v <sub>R</sub> + (<br>/ln)<br>13-2)<br>nination               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | D <sub>R</sub> = (po<br>LOS = (E<br><b>Speed D</b>                     | c/ml/ln)<br>xhibit 13-2)<br><b>leterminat</b>                                  |                                        | 0.009 L <sub>D</sub>                         |  |
| V <sub>R12</sub> Level of Servi  D <sub>R</sub> = 5.475 + 0  D <sub>R</sub> = 34.4 (pc/mi  LOS = D (Exhibit of Speed Determine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ice Detern<br>0.00734 v <sub>R</sub> + (<br>/ln)<br>13-2)<br>nination               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $D_R = (p)$ $LOS = (E)$ $Speed D$ $D_S = (E)$                          | c/mi/ln)<br>(xhibit 13-2)<br><b>Peterminat</b><br>(xhibit 13-12)               | ion                                    | 0.009 L <sub>D</sub>                         |  |
| $V_{R12}$ Level of Servi $D_R = 5.475 + 0.08 = 0.08 = 0.08$ Speed Determ $M_S = 0.543$ (Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ice Detern<br>0.00734 v <sub>R</sub> + (<br>/ln)<br>13-2)<br>nination               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $D_R = (p_1)$ $LOS = (E)$ $Speed D$ $D_S = (E)$ $S_R = mp$             | c/mi/ln)<br>(xhibit 13-2)<br>(eterminat<br>(xhibit 13-12)<br>(ch (Exhibit 13-1 | <b>ion</b>                             | 0.009 L <sub>D</sub>                         |  |
| $V_{R12}$ Level of Servi $D_R = 5.475 + 0$ $D_R = 34.4 \langle pc/million   D \langle Exhibit   Cos = 0.543 \langle Exite   Cos   D \langle Exhibit   Cos = 0.543 \langle Exite   Cos   $ | ice Determ<br>0.00734 v <sub>R</sub> + (<br>/(n)<br>13-2)<br>nination<br>bit 13-11) |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $D_R = (p)$ $LOS = (E)$ $Speed D$ $D_S = (E)$ $S_R = mp$               | c/mi/ln)<br>(xhibit 13-2)<br><b>Peterminat</b><br>(xhibit 13-12)               | <b>ion</b>                             | 0.009 L <sub>D</sub>                         |  |

|                                       | £                                 | KAWI                   | S AND RAM                     |                  |                                       | התס                 | MEEL                 |                                        |                     |            |
|---------------------------------------|-----------------------------------|------------------------|-------------------------------|------------------|---------------------------------------|---------------------|----------------------|----------------------------------------|---------------------|------------|
| General In                            | formation                         |                        |                               | Site Infor       |                                       |                     |                      |                                        |                     |            |
| Analyst                               |                                   |                        |                               | reeway/Dir of Tr |                                       | 1-275/9             |                      |                                        |                     |            |
| Agency or Comp                        |                                   |                        |                               | ınction          |                                       |                     | _                    | g of Express                           |                     |            |
| ate Performed                         | 7                                 | //2014                 |                               | ırisdiction      |                                       |                     | rough Cou            | nty                                    |                     |            |
| Analysis Time P                       |                                   |                        | Ai                            | nalysis Year     |                                       | 2040                |                      |                                        |                     |            |
| Project Descript                      | ion East-West Ro                  | ad                     |                               |                  |                                       |                     |                      |                                        |                     |            |
| nputs                                 |                                   |                        |                               |                  |                                       |                     |                      |                                        | ,                   |            |
| Upstream A                            | ldj Ramp                          | 1 '                    | nber of Lanes, N              | 3                |                                       |                     |                      |                                        | Downstrea           | am Adj     |
|                                       | r= -                              | Ramp Numbe             | er of Lanes, N                | 1                |                                       |                     |                      |                                        | Ramp                |            |
| ☐ Yes                                 | Г On                              | Acceleration           | Lane Length, L <sub>A</sub>   |                  |                                       |                     |                      |                                        | ΓYes                | □On        |
| ₽ No                                  | □ Off                             | Deceteration           | Lane Length L <sub>D</sub>    | 700              |                                       |                     |                      |                                        | ⊮ No                | ∏ Off      |
|                                       |                                   | Freeway Volu           | ıme, V <sub>F</sub>           | 2650             |                                       |                     |                      |                                        |                     |            |
| L <sub>up</sub> =                     | ft                                | Ramp Volum             | e, V <sub>R</sub>             | 840              |                                       |                     |                      |                                        | L <sub>down</sub> = | ft         |
|                                       |                                   | Freeway Free           | e-Flow Speed, S <sub>FF</sub> | 70.0             |                                       |                     |                      |                                        | V <sub>D</sub> =    | ven/h      |
| ∨ <sub>u</sub> =                      | veh/h                             |                        | low Speed, Spe                | 55.0             |                                       |                     |                      |                                        | , D                 | VC11/11    |
| Conversio                             | n to pc/h Un                      |                        | 111                           |                  |                                       |                     |                      |                                        |                     |            |
|                                       | V                                 | PHF                    | Terrain                       | %Truck           | %Rv                                   | Т                   | f <sub>HV</sub>      | fp                                     | v = V/PHF           | x f x f    |
| (pc/h)                                | (Veħ/hr)                          |                        |                               |                  |                                       |                     |                      |                                        |                     |            |
| reeway                                | 2650                              | 0.92                   | Level                         | 3                | 0                                     | _                   | 985                  | 1.00                                   | -                   | 24         |
| Ramp                                  | 840                               | 0.92                   | Level                         | 0                | 0                                     | 1.                  | 000                  | 1.00                                   | 9                   | 13         |
| JpStream                              |                                   |                        |                               |                  |                                       | -                   |                      |                                        |                     |            |
| DownStream                            |                                   |                        |                               |                  | -                                     |                     |                      | Diverge Areas                          |                     |            |
|                                       |                                   | Merge Areas            |                               |                  | Estimati                              | iono                |                      | Nisai de Vicas                         |                     |            |
| Estimation                            | 101 12                            |                        |                               |                  | Esuman                                | 1011 0              |                      |                                        |                     |            |
|                                       | V <sub>12</sub> = V <sub>F</sub>  | (P <sub>FM</sub> )     |                               |                  |                                       |                     | V <sub>12</sub> =    | = V <sub>R</sub> + (V <sub>F</sub> - V | R)P <sub>FD</sub>   |            |
| EQ =                                  | (Equa                             | ation 13-6 or          | 13-7)                         |                  | L <sub>EO</sub> =                     |                     | (                    | Equation 13-1                          | 12 or 13-13         | )          |
| FM =                                  | usino                             | Equation (             | Exhibit 13-6)                 |                  | P <sub>FD</sub> =                     |                     | 0.                   | 645 using Eq                           | uation (Exhi        | bit 13-7)  |
| / <sub>12</sub> =                     | pc/h                              | , - 4 ,                | ,                             |                  | V <sub>12</sub> =                     |                     |                      | 210 pc/h                               |                     | ,          |
|                                       |                                   | (Canadian 15           | 111 0 42 171                  |                  | V <sub>3</sub> or V <sub>av34</sub>   |                     |                      | 14 pc/h (Equa                          | tion 13.14          | or 13,17)  |
| 3 or V <sub>av34</sub>                |                                   |                        | 3-14 or 13-17)                |                  |                                       | . 07                |                      | . , .                                  | KIOH 10-14          | UI 10-17)  |
|                                       | 2,700 pc/h?                       |                        |                               |                  |                                       |                     |                      | Yes ☑ No                               |                     |            |
| $s V_3 \text{ or } V_{av34} >$        | 1.5 * V <sub>12</sub> /2   The Ye |                        |                               |                  | is V <sub>3</sub> or V <sub>av3</sub> | <sub>34</sub> > 1.5 |                      | Yes I No                               |                     | 40 40      |
| Yes,V <sub>12a</sub> =                |                                   |                        | -16, 13-18, or                |                  | If Yes, V <sub>12a</sub> =            |                     |                      | oc/h (Equation                         | 13-16, 13           | -18, or 13 |
|                                       | 13-19                             | )                      |                               |                  |                                       |                     |                      | 9)                                     |                     |            |
| Capacity C                            |                                   |                        |                               |                  | Capacit                               | Cn                  |                      |                                        | Contract No.        | 1.005      |
|                                       | Actual                            | -                      | Capacity                      | LOS F?           | <u> </u>                              | -                   | Actual               |                                        | pacity              | ŁOSF       |
|                                       |                                   |                        |                               |                  | V <sub>F</sub>                        |                     | 2924                 | Exhibit 13-                            | +-                  | No         |
| $V_{FO}$                              |                                   | Exhibit 13-8           |                               |                  | $V_{FO} = V_{F}$                      | - V <sub>R</sub>    | 2011                 | Exhibit 13-                            | 7200                | No         |
|                                       |                                   |                        |                               |                  | V <sub>R</sub>                        |                     | 913                  | Exhibit 13-1                           | 0 2200              | No         |
| low Enter                             | ring Merge Ir                     | fluence (              | roa                           |                  |                                       | terin               | a Dive               | rge Influen                            | ce Area             |            |
| TOW LITTE                             | Actual                            |                        | Desirable                     | Violation?       | 7077 1277                             | _                   | Actual               | Max Desiral                            |                     | Violation  |
| V                                     | Acidai                            | Exhibit 13-8           | Desirable                     | Trosacion:       | V <sub>12</sub>                       |                     | 210                  | Exhibit 13-8                           | 4400:All            | No         |
| V <sub>R12</sub>                      |                                   |                        | 25 m = 4 F)                   |                  |                                       |                     |                      | terminatio                             |                     |            |
|                                       | ervice Deteri                     |                        |                               |                  | -                                     |                     |                      |                                        |                     |            |
| $D_{R} = 5.475 -$                     | + 0.00734 v <sub>R</sub> +        | 0.0078 V <sub>12</sub> | - 0.00627 L <sub>A</sub>      |                  | '                                     | J <sub>R</sub> = 4  | 1.252 + 0            | .0086 V <sub>12</sub> - 0.             | 009 FD              |            |
| R <sup>≠</sup> (pc/m                  | ni/ln)                            |                        |                               |                  | D <sub>R</sub> = 17                   | '.9 (pc/            | /mi/ln)              |                                        |                     |            |
| O\$ = (Exhi                           | bit 13-2)                         |                        |                               |                  | LOS≃ B                                | (Exhib              | oit 13-2)            |                                        |                     |            |
| 00 ( tours in                         |                                   |                        |                               |                  | Speed D                               |                     |                      | on                                     |                     |            |
|                                       |                                   |                        |                               |                  |                                       |                     | xhibit 13            |                                        |                     |            |
| Speed Det                             | . 40 445                          |                        |                               |                  | s 0.4                                 | 200 (E.             |                      | -                                      |                     |            |
| peed Dete                             | it 13-11)                         |                        |                               |                  | 9 - 00                                | A                   | (E.A.TED             | 43 431                                 |                     |            |
| peed Det                              | it 13-11)<br>Exhibit 13-11)       |                        |                               |                  |                                       | ,                   | (Exhibit             |                                        |                     |            |
| peed Dete<br>s = (Exibi<br>R = mph (8 | •                                 |                        |                               |                  |                                       | ,                   | (Exhibit<br>(Exhibit |                                        |                     |            |

| Consul Infe                                          |                                                       | HI O MINE                                 | RAMP JUNG                               | Site Infor     |                                     |                       |                                      |                      |                        |
|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------|----------------|-------------------------------------|-----------------------|--------------------------------------|----------------------|------------------------|
| General Info                                         |                                                       |                                           |                                         |                |                                     | 375/00                |                                      |                      |                        |
| Analyst                                              | URS                                                   | i                                         |                                         | eeway/Dir of T |                                     | 275/SB                | DD# CLIO                             |                      |                        |
| Agency or Company                                    |                                                       | 70044                                     |                                         | nction         |                                     | i, of E-W Rd. of      |                                      |                      |                        |
| Date Performed                                       |                                                       | /2014                                     |                                         | risdiction     |                                     | lillsborough Co       | unty                                 |                      |                        |
| Analysis Time Perio                                  |                                                       |                                           | Ar                                      | alysis Year    |                                     | 040                   |                                      |                      |                        |
| Project Description                                  | East-West Ro                                          | ad                                        |                                         |                |                                     |                       |                                      |                      |                        |
| Inputs                                               |                                                       | I                                         |                                         |                |                                     |                       |                                      | Т                    |                        |
| Jpstream Adj Ramp                                    |                                                       | Freeway Nur                               | nber of Lanes, N                        | 3              |                                     |                       |                                      | Downstre             | am Adj                 |
|                                                      |                                                       | Ramp Numb                                 | er of Lanes, N                          | 1              |                                     |                       |                                      | Ramp                 |                        |
| Γ″Yes ΓΟι                                            | 1                                                     | Acceleration                              | Lane Length, L                          | 700            |                                     |                       |                                      | . T Yes              | □ On                   |
|                                                      | _                                                     | 1                                         | Lane Length L                           |                |                                     |                       |                                      | 1                    |                        |
| ™No FOt                                              | f                                                     |                                           |                                         | 4010           |                                     |                       |                                      | I No                 | ☐ Off                  |
| 6                                                    |                                                       | Freeway Vol                               |                                         | 1810           |                                     |                       |                                      | L <sub>down</sub> =  | ft                     |
| <sub>up</sub> = ft                                   |                                                       | Ramp Volum                                | • • • • • • • • • • • • • • • • • • • • | 140            |                                     |                       |                                      | GOWN                 | 11                     |
| / =b.#                                               |                                                       | Freeway Free                              | e-Flow Speed, S <sub>FF</sub>           | 70.0           |                                     |                       |                                      | V <sub>0</sub> ≃     | veh/h                  |
| / <sub>0</sub> =veh/ł                                | 1                                                     | Ramp Free-F                               | low Speed, S <sub>FR</sub>              | 55.0           |                                     |                       |                                      | 1                    |                        |
| Conversion t                                         | o pc/h Uni                                            | der Base                                  | Conditions                              |                |                                     |                       |                                      |                      |                        |
| (pc/h)                                               | V                                                     | PHF                                       | Terrain                                 | %Truck         | %Rv                                 | f <sub>HV</sub>       | f <sub>p</sub>                       | v = V/PHF            | x f <sub>HV</sub> x f, |
|                                                      | (Veh/hr)                                              |                                           |                                         |                |                                     |                       |                                      |                      |                        |
| Freeway                                              | 1810                                                  | 0.92                                      | Level                                   | 3              | 0                                   | 0.985                 | 1.00                                 |                      | 997                    |
| Ramp                                                 | 140                                                   | 0.92                                      | Level                                   | 0              | 0                                   | 1.000                 | 1.00                                 | _                    | 152                    |
| UpStream                                             |                                                       |                                           |                                         |                |                                     |                       |                                      |                      |                        |
| DownStream                                           |                                                       |                                           |                                         |                |                                     | L                     | Discours Assess                      |                      |                        |
|                                                      |                                                       | Merge Areas                               |                                         |                | E-Almandia                          |                       | Diverge Areas                        |                      |                        |
| Estimation of                                        | V <sub>12</sub>                                       |                                           |                                         |                | Estimatio                           | on or v <sub>12</sub> |                                      |                      |                        |
|                                                      | V <sub>12</sub> ≈ V <sub>E</sub>                      | (P <sub>EM</sub> )                        |                                         |                |                                     | V =                   | V <sub>R</sub> + (V <sub>F</sub> - V | -1P                  |                        |
|                                                      | 12 1                                                  | ation 13-6 o                              | r 13-7)                                 |                |                                     | * 12                  |                                      |                      | 91                     |
| EQ =                                                 |                                                       |                                           |                                         |                | LEO =                               |                       | (Equation 13                         |                      |                        |
| FM <sup>II</sup>                                     |                                                       |                                           | tion (Exhibit 13-6)                     |                | P <sub>FD</sub> =                   |                       | using Equati                         | on (Exhibit 13       | 3-7)                   |
| / <sub>12</sub> =                                    | 1192                                                  | ,                                         |                                         |                | V <sub>12</sub> =                   |                       | pc/h                                 |                      |                        |
| √ <sub>3</sub> or V <sub>av34</sub>                  |                                                       | c/h (Equatio                              | on 13-14 or 13-                         |                | V <sub>3</sub> or V <sub>av34</sub> |                       | pc/h (Equation                       | 13-14 or 13-1        | 7)                     |
|                                                      | 17)                                                   | _                                         |                                         |                |                                     | > 2 700 pc/h?         | T Yes T No                           |                      |                        |
| Is $V_3$ or $V_{av34} > 2,70$                        |                                                       |                                           |                                         |                |                                     |                       | □Yes □No                             |                      |                        |
| Is V <sub>3</sub> or V <sub>av34</sub> > 1.51        | 'V <sub>12</sub> /2                                   | s F No                                    |                                         |                | 1                                   | 1.5 12/2              | pc/h (Equation                       | )<br>ND 13-16 11     | 3.18 or                |
| f Yes,V <sub>12a</sub> =                             |                                                       |                                           | ion 13-16, 13-                          |                | If Yes,V <sub>12a</sub> =           | ,                     | 13-19)                               | )II 10-10, 1         | J-10, Oi               |
|                                                      | 10,01                                                 | 13-19)                                    |                                         |                | 0 "                                 |                       |                                      |                      |                        |
| Capacity Che                                         |                                                       |                                           |                                         | T              | Capacity                            |                       |                                      | and mile .           | Loca                   |
|                                                      | Actual                                                | -                                         | Capacity                                | LOS F?         |                                     | Actua                 |                                      | pacity               | LOSF                   |
|                                                      |                                                       |                                           |                                         | 1              | V <sub>F</sub>                      |                       | Exhibit 13                           |                      |                        |
| V <sub>FO</sub>                                      | 2149                                                  | Exhibit 13-8                              |                                         | No             | V <sub>FO</sub> = V <sub>F</sub> -  | VR                    | Exhibit 13                           | -8                   |                        |
| 740                                                  | 2170                                                  | L. C. |                                         |                | - 1/                                |                       | Exhibit 13                           | 3-                   |                        |
|                                                      |                                                       |                                           |                                         |                | V <sub>R</sub>                      |                       | 10                                   |                      |                        |
| low Entering                                         | g Merge In                                            | fluence A                                 | Area                                    |                | Flow Ent                            | ering Dive            | erge Influe                          |                      |                        |
|                                                      | Actual                                                | Max                                       | Desirable                               | Violation?     |                                     | Actual                | Max De                               | sirable              | Violation              |
| V <sub>R12</sub>                                     | 1487                                                  | Exhibit 13-8                              | 4600:All                                | No             | V <sub>12</sub>                     |                       | Exhibit 13-8                         |                      |                        |
| evel of Serv                                         | ice Detern                                            | nination (                                | if not F)                               |                | Level of                            | Service D             | eterminatio                          | on (if not           | F)                     |
|                                                      | 0.00734 v <sub>R</sub> + (                            |                                           |                                         |                | D                                   | R = 4.252 +           | 0.0086 V <sub>12</sub> - 0           | 0.009 L <sub>D</sub> |                        |
| ) <sub>R</sub> = 12.6 (pc/m                          |                                                       | 16                                        |                                         |                | D <sub>R</sub> = (pc                | /mi/ln)               |                                      | -                    |                        |
|                                                      | -                                                     |                                           |                                         |                | .,                                  | thibit 13-2)          |                                      |                      |                        |
| OS = B (Exhibit                                      |                                                       |                                           |                                         |                |                                     | lon                   |                                      |                      |                        |
| Speed Detern                                         | nination                                              |                                           |                                         |                | -                                   | eterminati            | on                                   |                      |                        |
|                                                      |                                                       |                                           |                                         | 3              | hibit 13-12)                        |                       |                                      |                      |                        |
| 1 <sub>s</sub> ≃ 0.261 (Exi                          |                                                       |                                           |                                         |                | IC - mak                            | n (Exhibit 13-12      | η.                                   |                      |                        |
|                                                      | (Exhibit 13-11)                                       |                                           |                                         |                | S <sub>R</sub> = mpt                | ( (CXIIIDIC 10-12     | 7                                    |                      |                        |
| 62.7 mph                                             | (Exhibit 13-11)                                       |                                           |                                         |                |                                     | r (Exhibit 13-12      |                                      |                      |                        |
| $S_R = 62.7 \text{ mph}$<br>$S_0 = 69.4 \text{ mph}$ | (Exhibit 13-11)<br>(Exhibit 13-11)<br>(Exhibit 13-13) |                                           |                                         |                | S <sub>0</sub> = mpt                |                       | 2)                                   |                      |                        |

East-West Road 2040 AM-PM Peak Hour HCS Multi-Lane Analysis

| M                                           | ULTILANE HIGHWAYS | WORKSHEET(Directi                        | on 1)                                   |
|---------------------------------------------|-------------------|------------------------------------------|-----------------------------------------|
|                                             |                   |                                          |                                         |
|                                             |                   |                                          |                                         |
| <u></u>                                     |                   |                                          |                                         |
|                                             |                   |                                          |                                         |
|                                             |                   |                                          |                                         |
| General Information                         |                   | Site Information                         |                                         |
| Analyst                                     |                   | Highway/Direction to Travel              | East-West Road                          |
| Agency or Company                           | URS               | From/To<br>Jurisdiction                  | I-275/Commerce Pk Blvd<br>City of Tampa |
| Date Performed                              | 10/7/2014         | Analysis Year                            | 2040                                    |
| Analysis Time Period                        | AM                |                                          |                                         |
| Project Description East-Wes                |                   | ** (\$.1k                                | C Blan (va)                             |
| Coper.(LOS)                                 |                   | Des. (N)                                 | ☐ Plan. (vp)                            |
| Flow Inputs                                 |                   |                                          | ***                                     |
| Volume, V (veh/h)                           | 440               | Peak-Hour Factor, PHF                    | 0.92                                    |
| AADT(veh/h)                                 |                   | %Trucks and Buses, P <sub>T</sub>        | 0                                       |
| Peak-Hour Prop of AADT (veh/k               | d)                | %RVs, P <sub>R</sub><br>General Terrain: | 0<br>Levei                              |
| Peak-Hour Direction Prop, D<br>DDHV (veh/h) |                   | Grade Length (mi)                        | 0.00                                    |
| Driver Type Adjustment                      | 1.00              | Up/Down %                                | 0.00                                    |
|                                             |                   | Number of Lanes                          | 2                                       |
| Calculate Flow Adjus                        | stments           |                                          |                                         |
| fp                                          | 1.00              | E <sub>R</sub>                           | 1.2                                     |
| E <sub>T</sub>                              | 1.5               | $f_{HV}$                                 | 1.000                                   |
| Speed Inputs                                |                   | Calc Speed Adj and                       | FFS                                     |
| Lane Width, LW (ft)                         | 12.0              | f <sub>LW</sub> (mi/h)                   | 0.0                                     |
| Total Lateral Clearance, LC (ft)            | 12.0              |                                          | 0.0                                     |
| Access Points, A (A/mi)                     | 0                 | f <sub>LC</sub> (mi/h)                   |                                         |
| Median Type, M                              | Divided           | f <sub>A</sub> (mi/h)                    | 0.0                                     |
| FFS (measured)                              |                   | f <sub>M</sub> (mi/h)                    | 0.0                                     |
| Base Free-Flow Speed, BFFS                  | 60.0              | FFS (mi/h)                               | 60.0                                    |
| Operations                                  |                   | Design                                   |                                         |
|                                             |                   |                                          |                                         |
|                                             |                   | Design (N)                               |                                         |
| Operational (LOS)                           |                   | Required Number of Lanes, N              |                                         |
| Flow Rate, v <sub>p</sub> (pc/h/ln)         | 239               | Flow Rate, v <sub>p</sub> (pc/h)         |                                         |
| Speed, S (mi/h)                             | 60.0              | Max Service Flow Rate (pc/h/ln)          |                                         |
| ) (pc/mi/in)                                | 4.0               |                                          |                                         |
| .os                                         | A                 | Design LOS                               |                                         |
|                                             |                   |                                          |                                         |
| Bicycle Level of Service                    | 39 Alignetic      |                                          |                                         |
| neyers cerei or service                     |                   |                                          |                                         |

| M                                      | MULTILANE HIGHWAYS WORKSHEET(Direction 2) |                                       |                        |  |  |  |  |
|----------------------------------------|-------------------------------------------|---------------------------------------|------------------------|--|--|--|--|
|                                        |                                           |                                       |                        |  |  |  |  |
|                                        |                                           |                                       |                        |  |  |  |  |
| 1 -                                    |                                           |                                       |                        |  |  |  |  |
|                                        |                                           |                                       |                        |  |  |  |  |
|                                        |                                           |                                       |                        |  |  |  |  |
| General Information                    |                                           | Site Information                      |                        |  |  |  |  |
| Analyst                                |                                           | Highway/Direction to Travel           | East-West Road         |  |  |  |  |
| Agency or Company                      | URS                                       | From/To                               | I-275/Commerce Pk Blvd |  |  |  |  |
| Date Performed                         | 10/7/2014                                 | Jurisdiction<br>Analysis Year         | City of Tampa<br>2040  |  |  |  |  |
| Analysis Time Period                   | AM                                        | Allalysis Toal                        |                        |  |  |  |  |
| Project Description East-West          |                                           | II III                                | 7 Mar - 10 N           |  |  |  |  |
| ☐ Oper.(LOS)                           |                                           | es. (N)                               | Plan. (vp)             |  |  |  |  |
| Flow Inputs                            |                                           |                                       | 0.00                   |  |  |  |  |
| Volume, V (veh/h)                      | 1390                                      | Peak-Hour Factor, PHF                 | 0.92                   |  |  |  |  |
| AADT(veh/h)                            |                                           | %Trucks and Buses, P <sub>T</sub>     | 0                      |  |  |  |  |
| Peak-Hour Prop of AADT (veh/d          | ")                                        | %RVs, P <sub>R</sub>                  | 0<br>Level             |  |  |  |  |
| Peak-Hour Direction Prop, D            |                                           | General Terrain:<br>Grade Length (mi) | 0.00                   |  |  |  |  |
| DDHV (veh/h)<br>Driver Type Adjustment | 1.00                                      | Up/Down %                             | 0.00                   |  |  |  |  |
|                                        |                                           | Number of Lanes                       | 2                      |  |  |  |  |
| Calculate Flow Adjus                   | tments                                    |                                       |                        |  |  |  |  |
| fp                                     | 1.00                                      | $E_R$                                 | 1.2                    |  |  |  |  |
| ÉT                                     | 1.5                                       | f <sub>HV</sub>                       | 1.000                  |  |  |  |  |
| Speed Inputs                           |                                           | Calc Speed Adj and I                  | FS                     |  |  |  |  |
| Lane Width, LW (ft)                    | 12.0                                      | f <sub>Lw</sub> (mi/h)                | 0.0                    |  |  |  |  |
| Total Lateral Clearance, LC (ft)       | 12.0                                      | f <sub>LC</sub> (mi/h)                | 0.0                    |  |  |  |  |
| Access Points, A (A/mi)                | 0                                         |                                       | 0.0                    |  |  |  |  |
| Median Type, M                         | Divided                                   | f <sub>A</sub> (mi/h)                 |                        |  |  |  |  |
| FFS (measured)                         |                                           | f <sub>M</sub> (mi/h)                 | 0.0                    |  |  |  |  |
| Base Free-Flow Speed, BFFS             | 60.0                                      | FFS (mi/h)                            | 60.0                   |  |  |  |  |
| Operations                             |                                           | Design                                |                        |  |  |  |  |
| •                                      |                                           |                                       |                        |  |  |  |  |
|                                        |                                           | Design (N)                            |                        |  |  |  |  |
| Operational (LOS)                      |                                           | Required Number of Lanes, N           |                        |  |  |  |  |
| Flow Rate, v <sub>p</sub> (pc/h/ln)    | 755                                       | Flow Rate, v <sub>p</sub> (pc/h)      |                        |  |  |  |  |
| Speed, S (mi/h)                        | 60.0                                      | Max Service Flow Rate (pc/h/ln)       |                        |  |  |  |  |
| D (pc/mi/ln)                           | 12.6                                      | Design LOS                            |                        |  |  |  |  |
| LOS                                    | 8                                         | Ť                                     |                        |  |  |  |  |
|                                        |                                           |                                       |                        |  |  |  |  |
| Bicycle Level of Service               |                                           |                                       |                        |  |  |  |  |
|                                        |                                           |                                       |                        |  |  |  |  |

| M                                                                                                                                     | MULTILANE HIGHWAYS WORKSHEET(Direction 1) |                                                                                           |                                                         |                                         |                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|--------------------------------------|--|--|
|                                                                                                                                       |                                           |                                                                                           | ,                                                       | ,                                       |                                      |  |  |
| General Information                                                                                                                   |                                           | Sit                                                                                       | e Information                                           |                                         |                                      |  |  |
| Analyst Agency or Company Date Performed Analysis Time Period Project Description East-Wes                                            | URS<br>10/7/2014<br>PM                    | From<br>Juris                                                                             | way/Direction to Travel<br>n/To<br>diction<br>ysis Year |                                         | est Road<br>ommerce Pk Blvd<br>"ampa |  |  |
| ☐ Oper.(LOS)                                                                                                                          |                                           | P Des. (N                                                                                 | )                                                       | Г                                       | Plan. (vp)                           |  |  |
| Flow Inputs Volume, V (veh/h) AADT(veh/h)                                                                                             | 1390                                      | %Tru                                                                                      | Hour Factor, PHF<br>cks and Buses, P <sub>T</sub>       | 0.92                                    |                                      |  |  |
| Peak-Hour Prop of AADT (veh/o<br>Peak-Hour Direction Prop, D<br>DDHV (veh/h)<br>Driver Type Adjustment                                | 1.00                                      | Grade                                                                                     | ral Terrain:                                            | 0<br>Level<br>0.00<br>0.00<br>2         |                                      |  |  |
| Calculate Flow Adjus                                                                                                                  | stments                                   |                                                                                           |                                                         |                                         |                                      |  |  |
| f <sub>p</sub><br>E <sub>T</sub>                                                                                                      | 1.00<br>1.5                               | E <sub>R</sub><br>f <sub>HV</sub>                                                         |                                                         | 1.2<br>1.000                            |                                      |  |  |
| Speed Inputs                                                                                                                          |                                           | Cal                                                                                       | c Speed Adj and                                         | FFS                                     |                                      |  |  |
| Lane Width, LW (ft) Total Lateral Clearance, LC (ft) Access Points, A (A/mi) Median Type, M FFS (measured) Base Free-Flow Speed, BFFS | 12.0<br>12.0<br>0<br>Divided              | f <sub>LW</sub> (I<br>f <sub>LC</sub> (I<br>f <sub>A</sub> (m<br>f <sub>M</sub> (n<br>FFS | ni/h)<br>i/h)                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>60.0 |                                      |  |  |
| Operations                                                                                                                            |                                           | Des                                                                                       | ign                                                     |                                         |                                      |  |  |
| Operational (LOS) Flow Rate, v <sub>p</sub> (pc/h/ln) Speed, S (mi/h) O (pc/mi/ln) OS                                                 | 755<br>60.0<br>12.6<br>B                  | Desig<br>Requi<br>Flow<br>Max S                                                           |                                                         | ·)                                      |                                      |  |  |
| licycle Level of Service                                                                                                              | 100                                       |                                                                                           |                                                         |                                         | ···                                  |  |  |
|                                                                                                                                       |                                           |                                                                                           |                                                         |                                         |                                      |  |  |

| Ceneral Information                                                                                                                                                                                                                                                                                                                   | M                                                                                                                                     | MULTILANE HIGHWAYS WORKSHEET(Direction 2) |                                                                                                       |                                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Analyst                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                           |                                                                                                       |                                         |  |  |  |
| Agency or Company   URS   Date Performed   1077/2014   Urrisdiction   City of Tampa   2040                                                                                                                                                                                                                                            | General Information                                                                                                                   |                                           | Site Information                                                                                      |                                         |  |  |  |
| Des. (N)                                                                                                                                                                                                                                                                                                                              | Agency or Company<br>Date Performed<br>Analysis Time Period                                                                           | 10/7/2014<br>PM                           | From/To<br>Jurisdiction                                                                               | I-275/Commerce Pk Blvd<br>City of Tampa |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                           | Des. (N)                                                                                              | ☐ Plan. (vp)                            |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                 | Flow Inputs                                                                                                                           |                                           |                                                                                                       |                                         |  |  |  |
| Form                                                                                                                                                                                                                                                                                                                                  | Volume, V (veh/h)<br>AADT(veh/h)                                                                                                      | d)<br>-                                   | %Trucks and Buses, P <sub>T</sub> %RVs, P <sub>R</sub> General Terrain:  Grade Length (mi)  Up/Down % | 0<br>Level<br>0.00<br>0.00              |  |  |  |
| Form                                                                                                                                                                                                                                                                                                                                  | Calculate Flow Adjus                                                                                                                  | tments                                    |                                                                                                       |                                         |  |  |  |
| Lane Width, LW (ft) 12.0 $f_{LW}$ (mi/h) 0.0 Total Lateral Clearance, LC (ft) 12.0 $f_{LC}$ (mi/h) 0.0 Access Points, A (A/mi) 0 $f_{A}$ (mi/h) 0.0 Median Type, M Divided $f_{M}$ (mi/h) 0.0 FFS (measured) $f_{M}$ (mi/h) 0.0 FFS (mi/h) 60.0 Design (N) Required Number of Lanes, N Flow Rate, $v_{p}$ (pc/h/ln) 4.0 OS A          | f <sub>p</sub><br>E <sub>T</sub>                                                                                                      | 1.00                                      |                                                                                                       |                                         |  |  |  |
| Total Lateral Clearance, LC (ft) 12.0 $f_{LC}$ (mi/h) 0.0 Access Points, A (A/mi) 0 $f_A$ (mi/h) 0.0 Median Type, M Divided $f_M$ (mi/h) 0.0 FFS (measured) $f_M$ (mi/h) 0.0 FFS (mi/h) 60.0 Design  Design  Design (N) Required Number of Lanes, N Flow Rate, $v_p$ (pc/h) Max Service Flow Rate (pc/h/ln) Design LOS  OS A          | Speed Inputs                                                                                                                          |                                           | Calc Speed Adj and I                                                                                  | FFS                                     |  |  |  |
| Design (N)  Design (N)  Required Number of Lanes, N  Flow Rate, v <sub>p</sub> (pc/h)  Design (N)  Required Number of Lanes, N  Flow Rate, v <sub>p</sub> (pc/h)  Max Service Flow Rate (pc/h/ln)  Design LOS  Design (N)  Required Number of Lanes, N  Flow Rate, v <sub>p</sub> (pc/h)  Max Service Flow Rate (pc/h/ln)  Design LOS | Lane Width, LW (ft) Total Lateral Clearance, LC (ft) Access Points, A (A/mi) Median Type, M FFS (measured) Base Free-Flow Speed, BFFS | 12.0<br>0<br>Divided                      | f <sub>LC</sub> (mi/h)<br>f <sub>A</sub> (mi/h)<br>f <sub>M</sub> (mi/h)                              | 0.0<br>0.0<br>0.0                       |  |  |  |
| Design (N)  Design (N)  Required Number of Lanes, N  Flow Rate, v <sub>p</sub> (pc/h)  Design (N)  Required Number of Lanes, N  Flow Rate, v <sub>p</sub> (pc/h)  Max Service Flow Rate (pc/h/ln)  Design LOS                                                                                                                         | Operations                                                                                                                            |                                           | Design                                                                                                |                                         |  |  |  |
| Icycle Level of Service                                                                                                                                                                                                                                                                                                               | Operational (LOS)<br>Flow Rate, v <sub>p</sub> (pc/h/ln)<br>Speed, S (mi/h)<br>O (pc/mi/ln)<br>OS                                     | 60.0<br>4.0                               | Required Number of Lanes, N<br>Flow Rate, v <sub>p</sub> (pc/h)<br>Max Service Flow Rate (pc/h/ln)    |                                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                       | Bicycle Level of Service                                                                                                              |                                           |                                                                                                       |                                         |  |  |  |



AI SHEEL

ity Of Tampa

From I-

Eas -

levard/New Tampa Boulevard

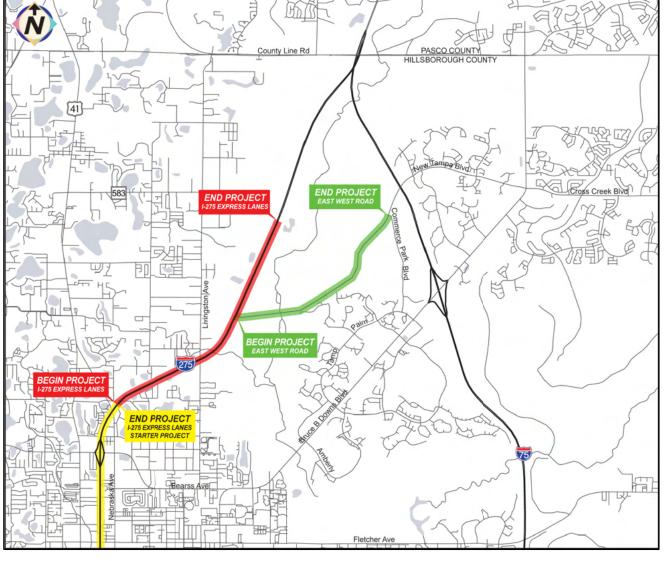
## **ALTERNATIVE 4**

PREPARED BY
URS CORPORATION SOUTHERN

## URS CORPORATION SOUTHERN PASCO COUNTY HILLSBOROUGH COUNTY K-Y - T

LOCATION OF PROJECT

- PLANS


Aerial Photography Date: 2011

SHEET DESCRIPTION

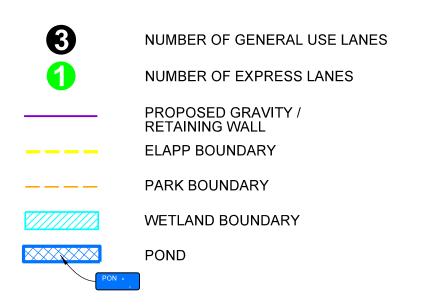
COVER SHEET
LEGEND/SHEET LAYOUT

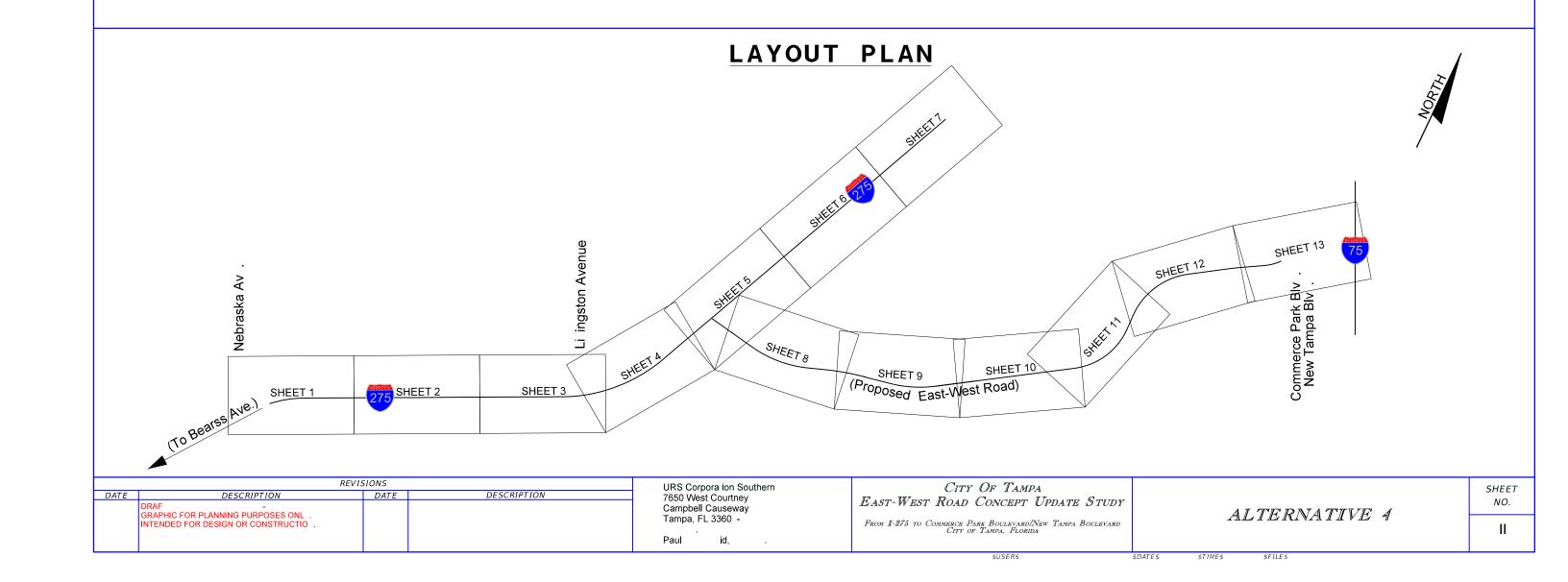
INDEX OF PLANS

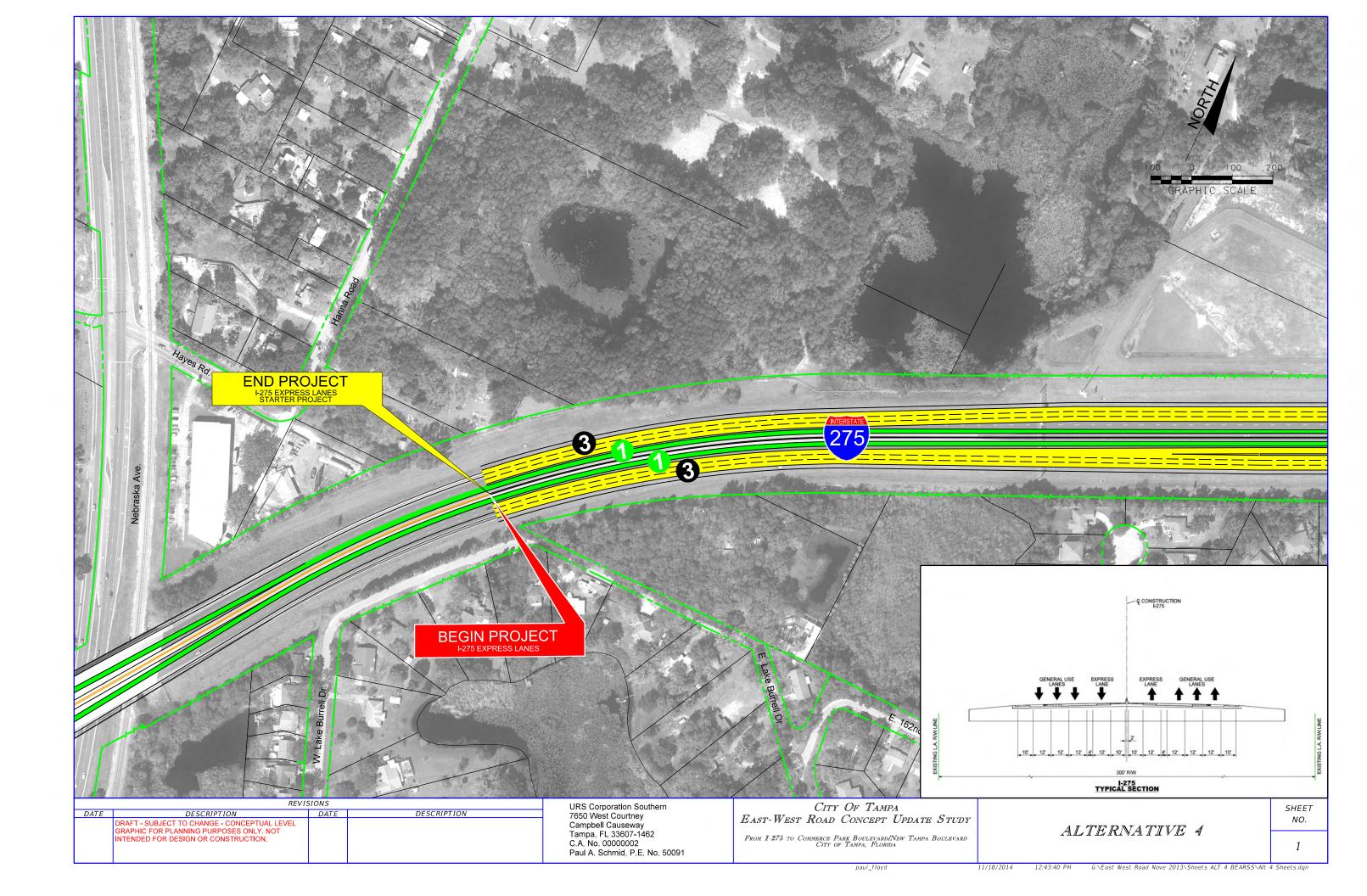
SHEET N .

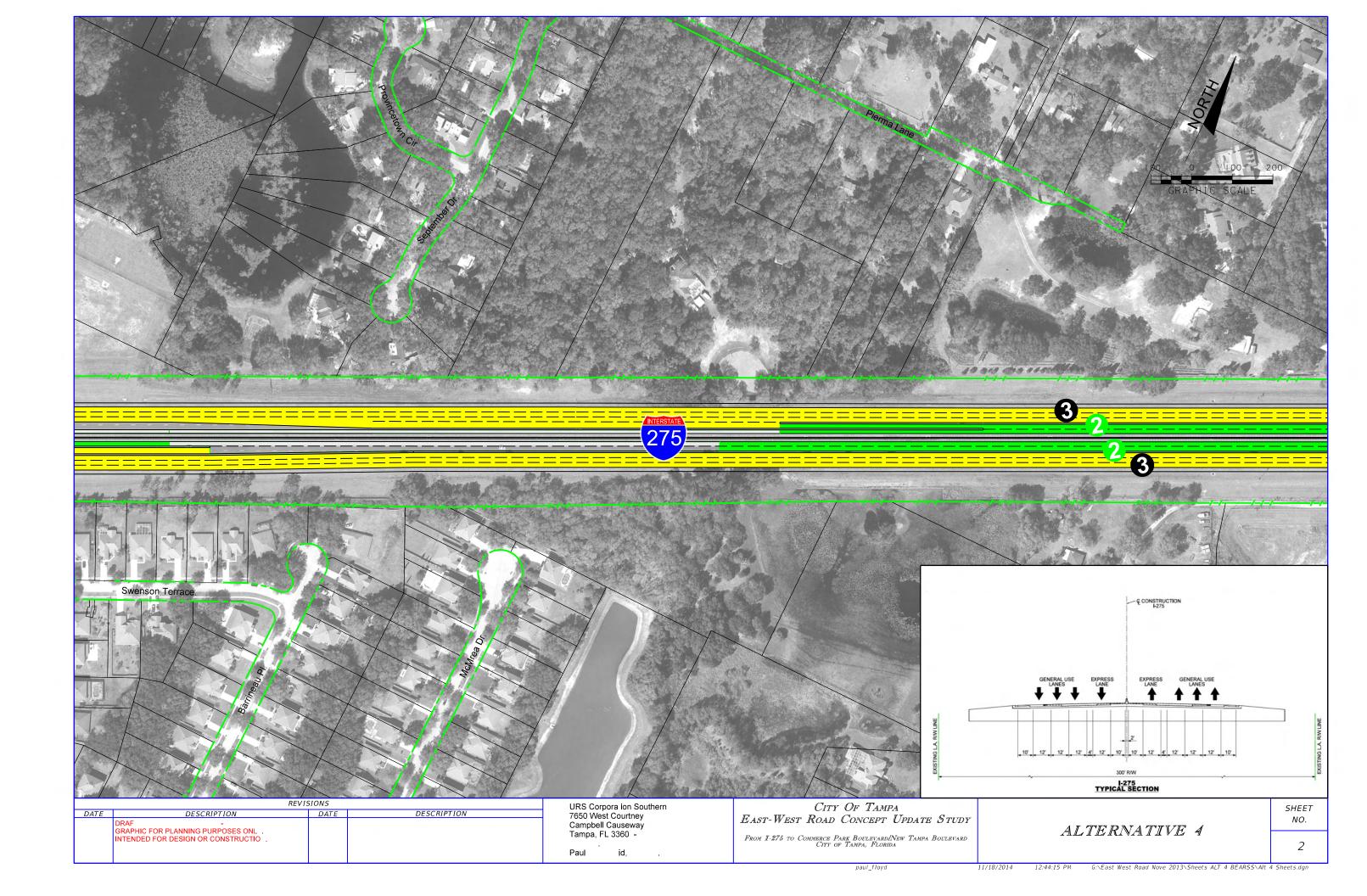


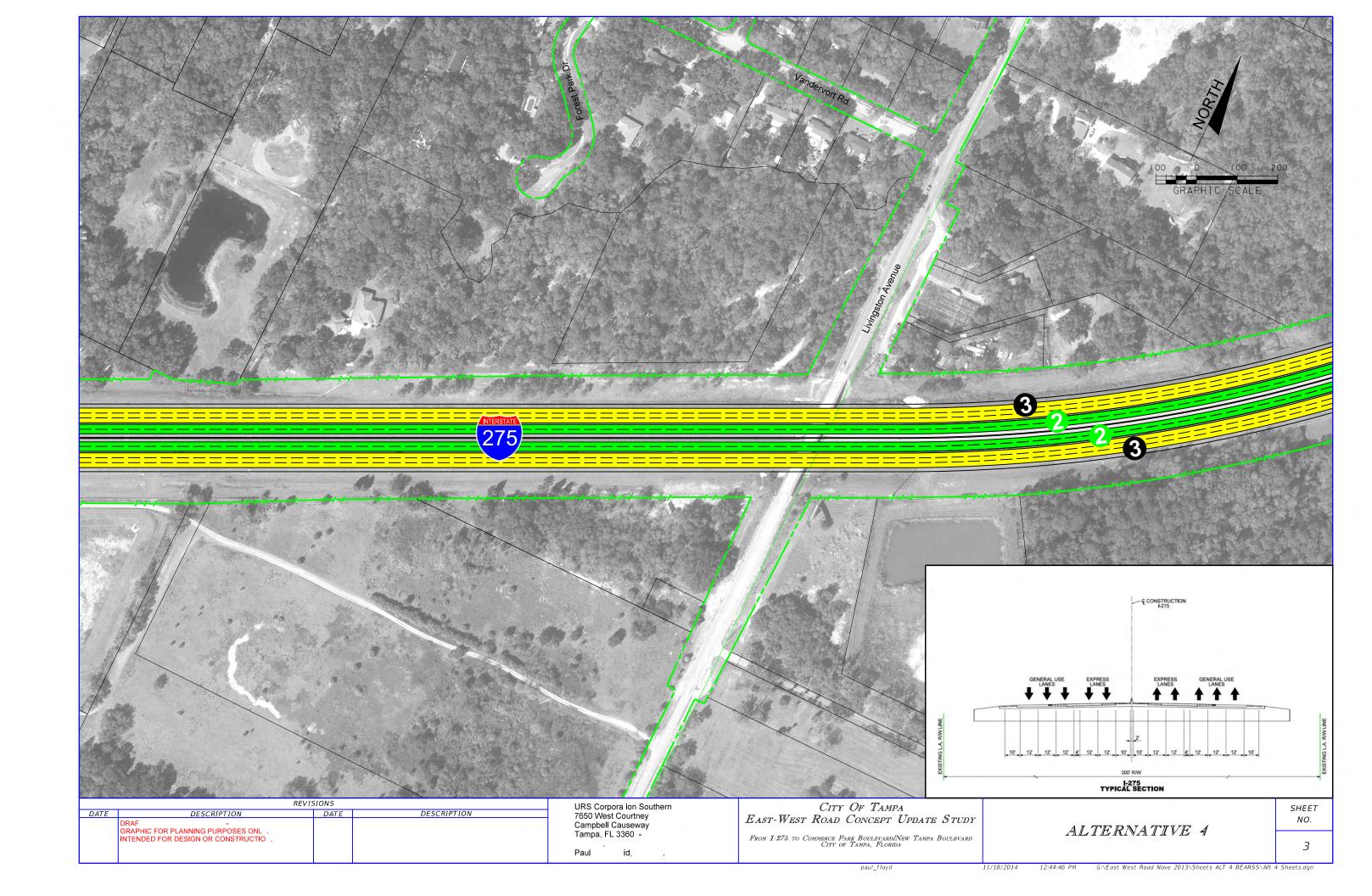
URS Corpora ion Southern 7650 West Courtney Campbell Causeway Tampa, FL 3360 -

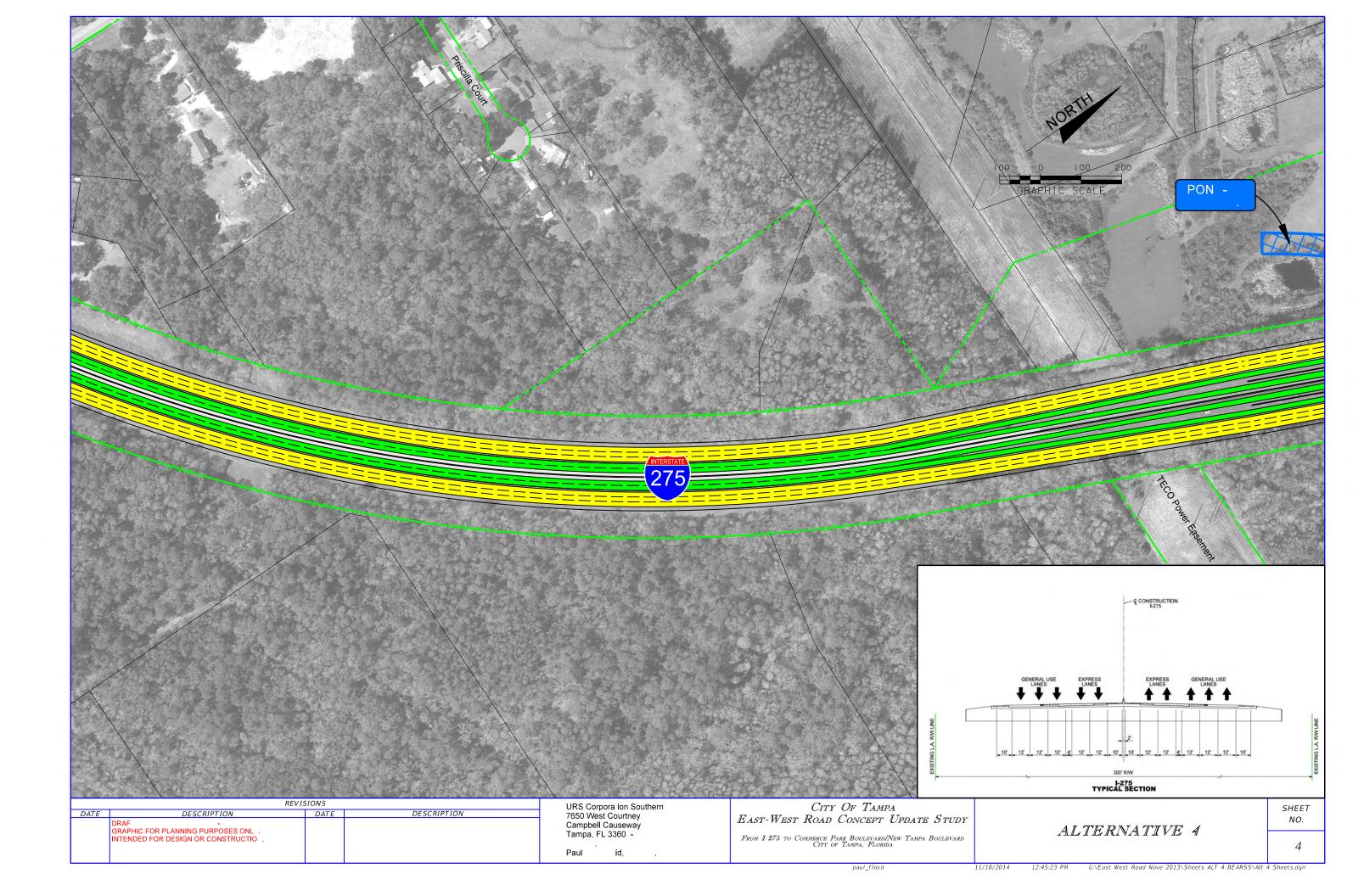

PROJECT LOCATION MAP

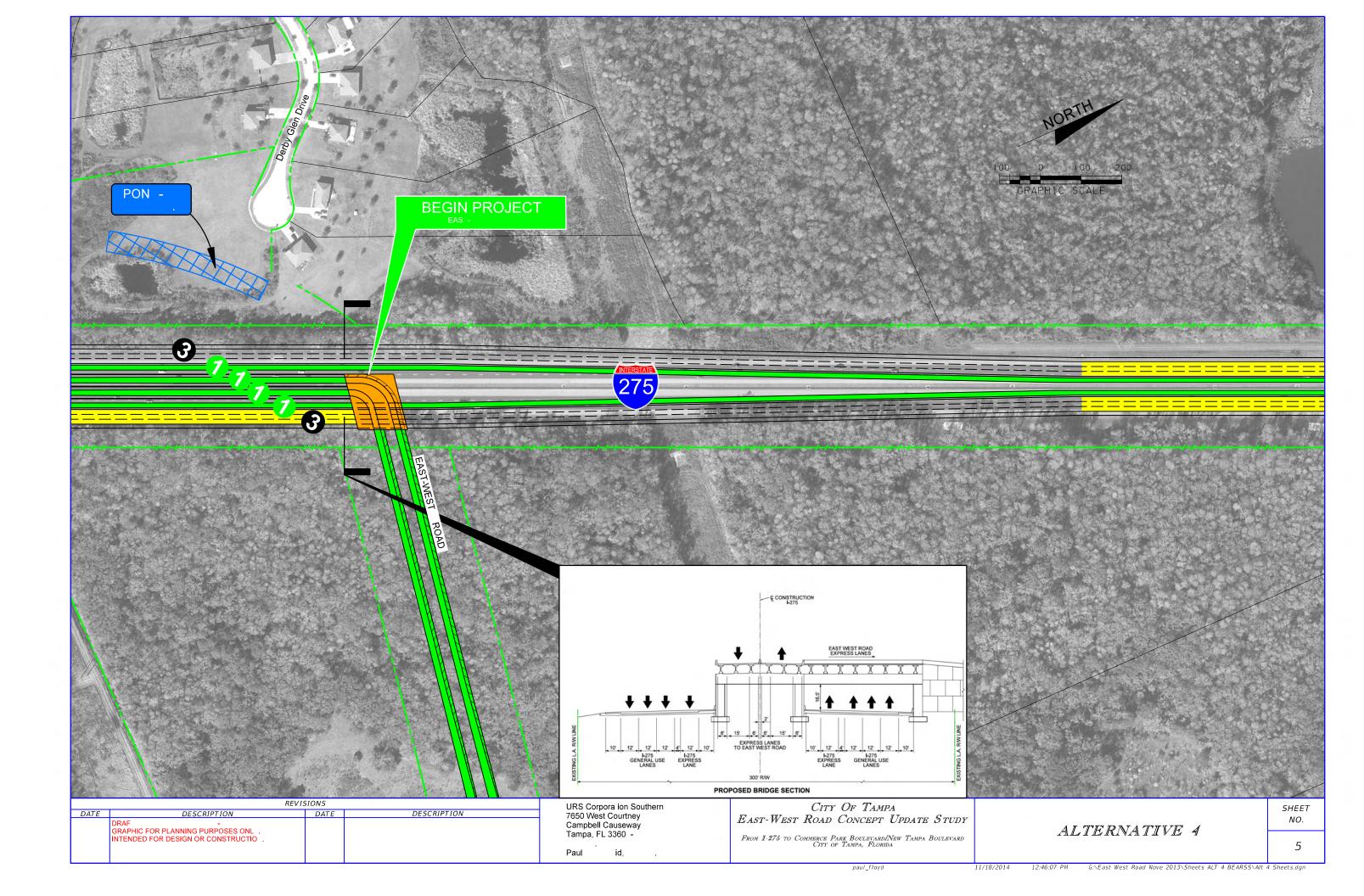

DRAF - ING PURPOSES ONLY


CON - TP -- I -R - v- RD; - IUI A. Scimid, F. No.

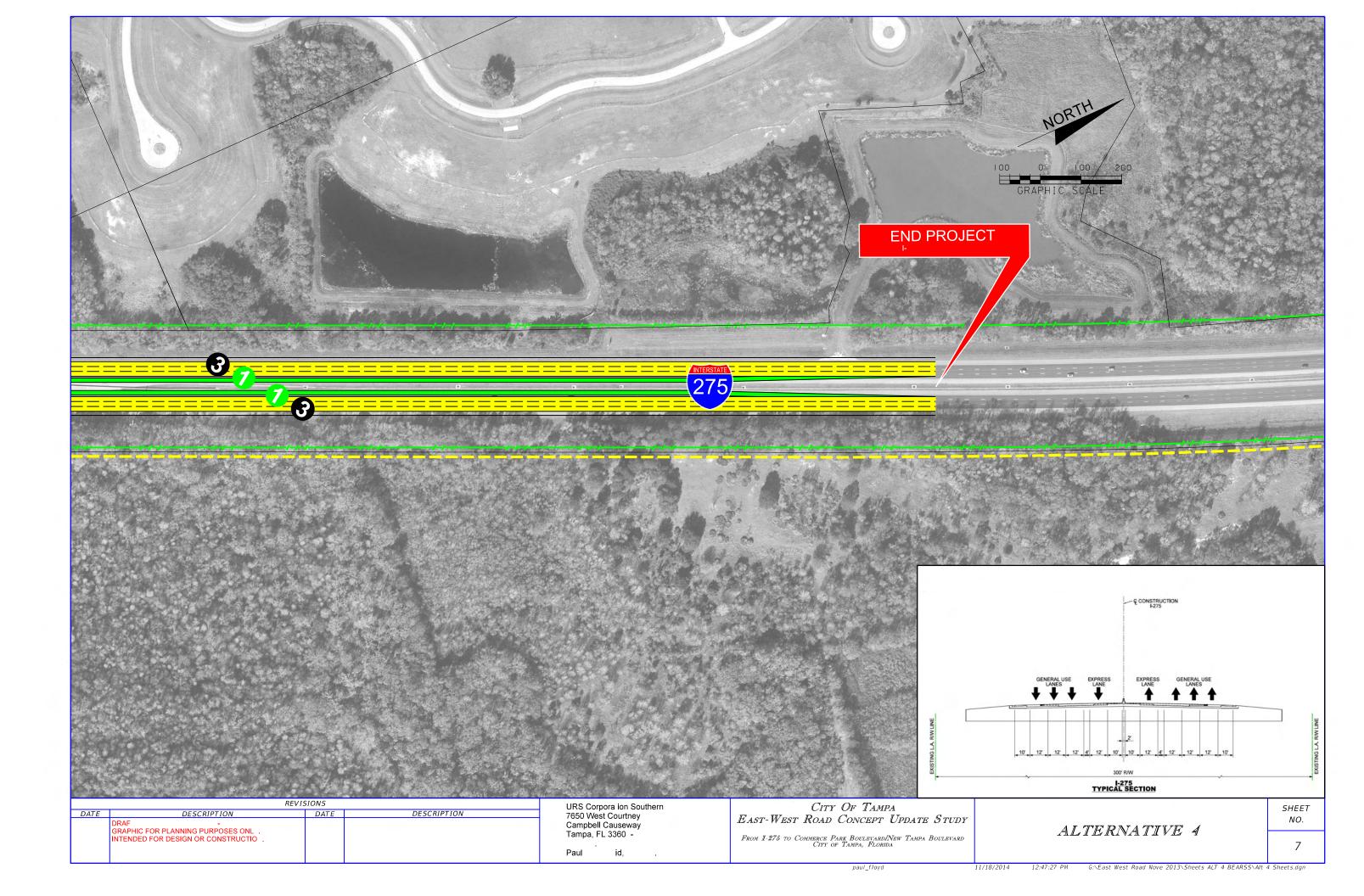

P.- <u>5009</u>1

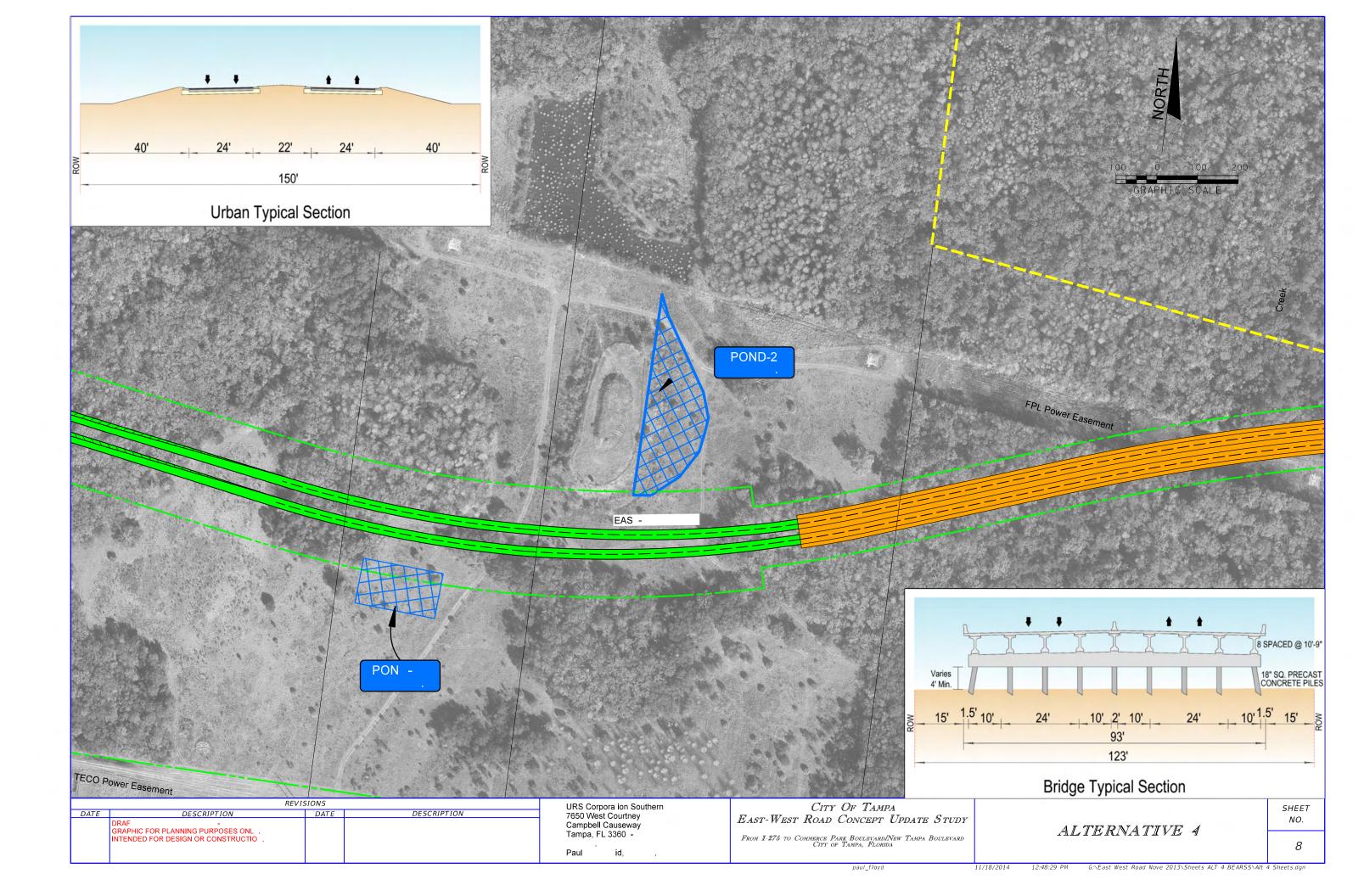

## **LEGEND**

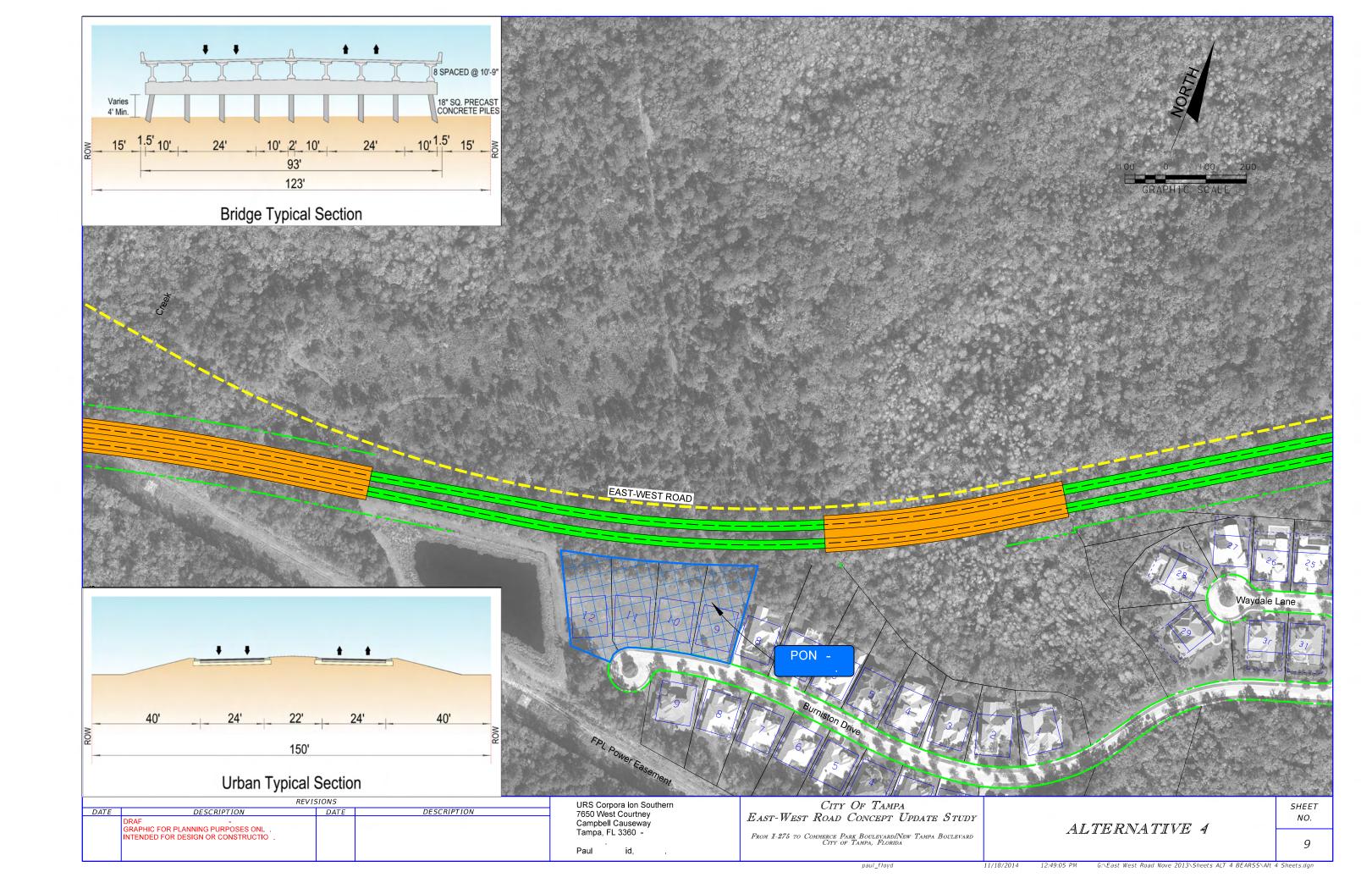


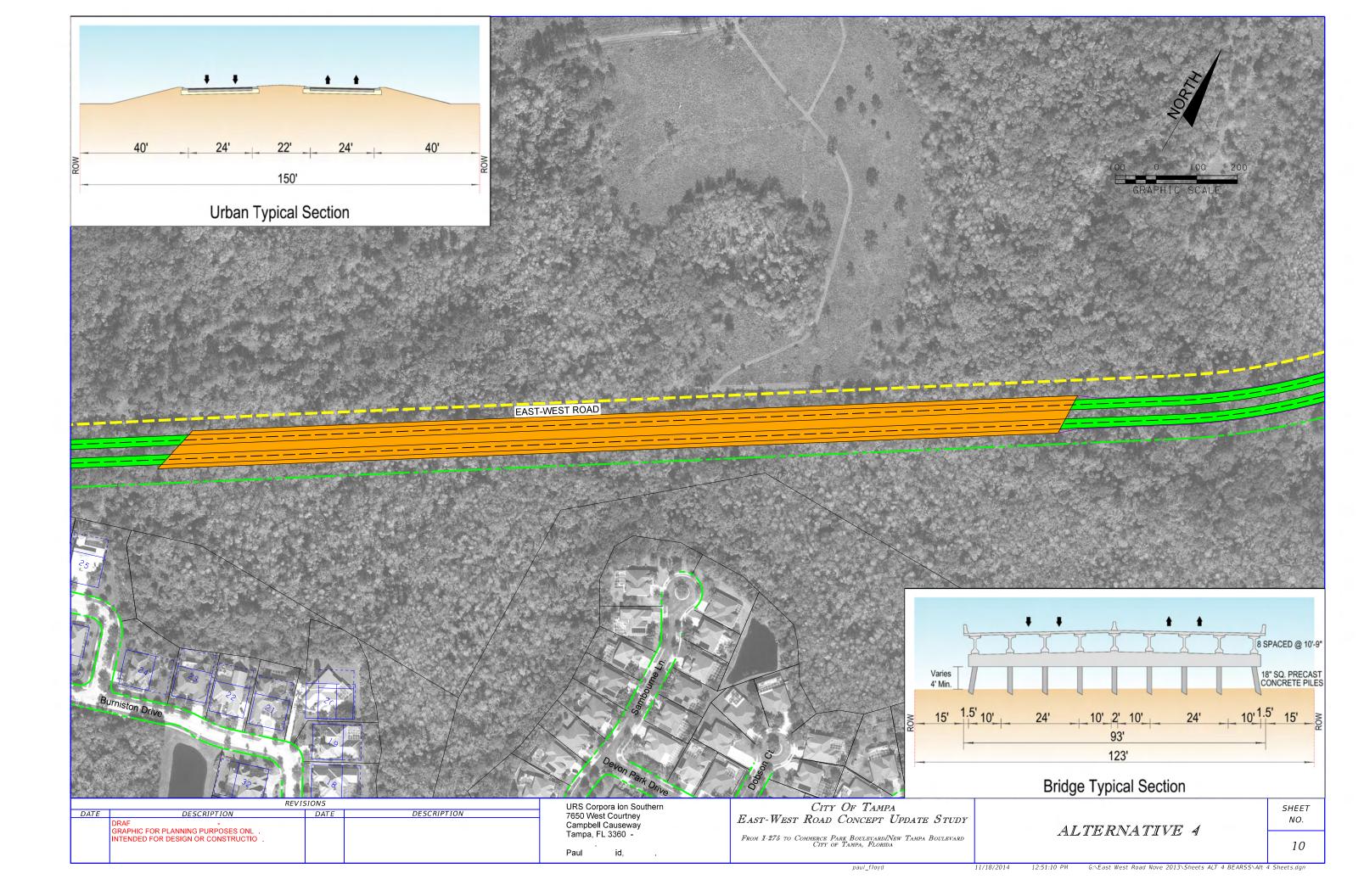



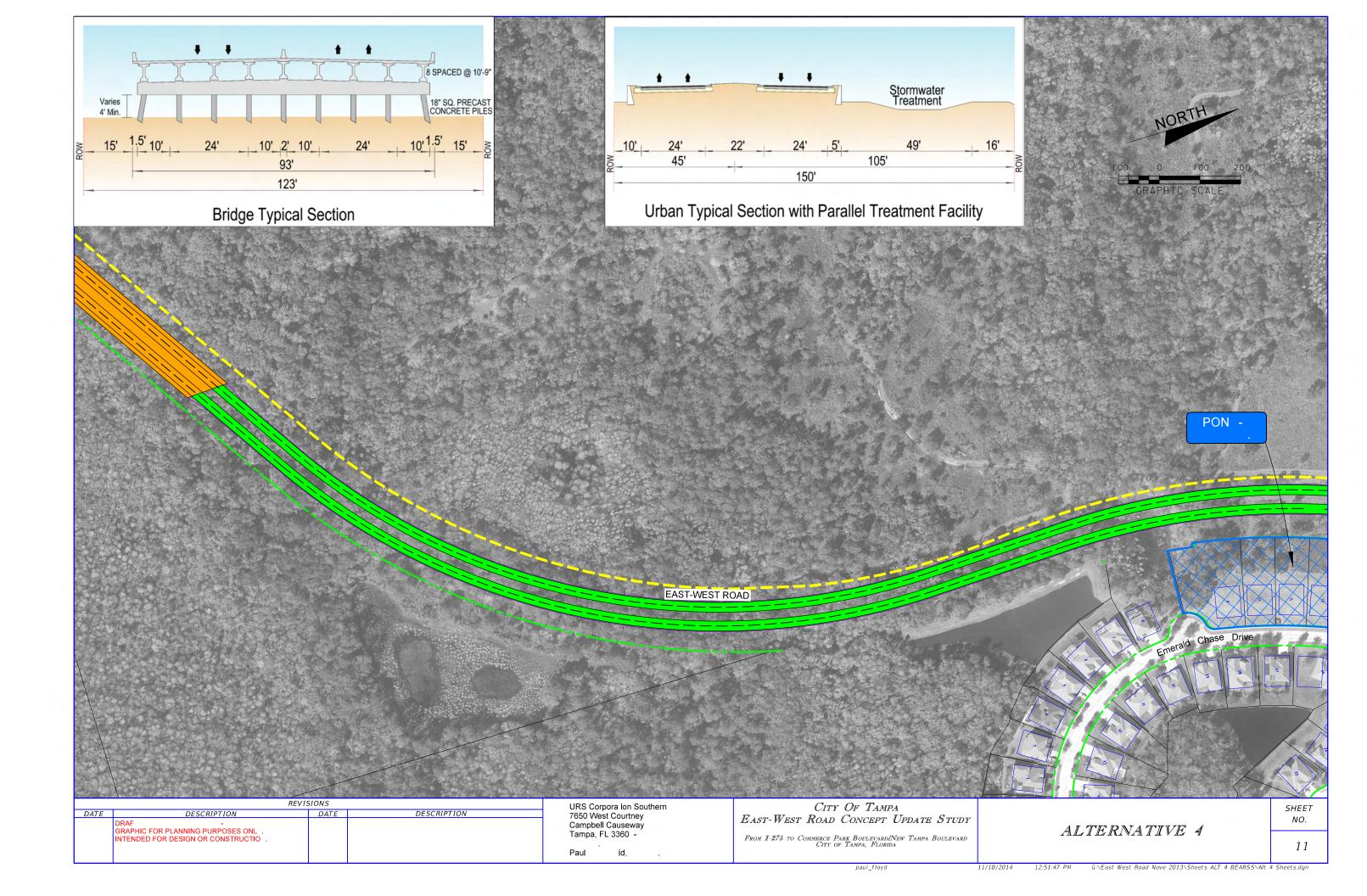


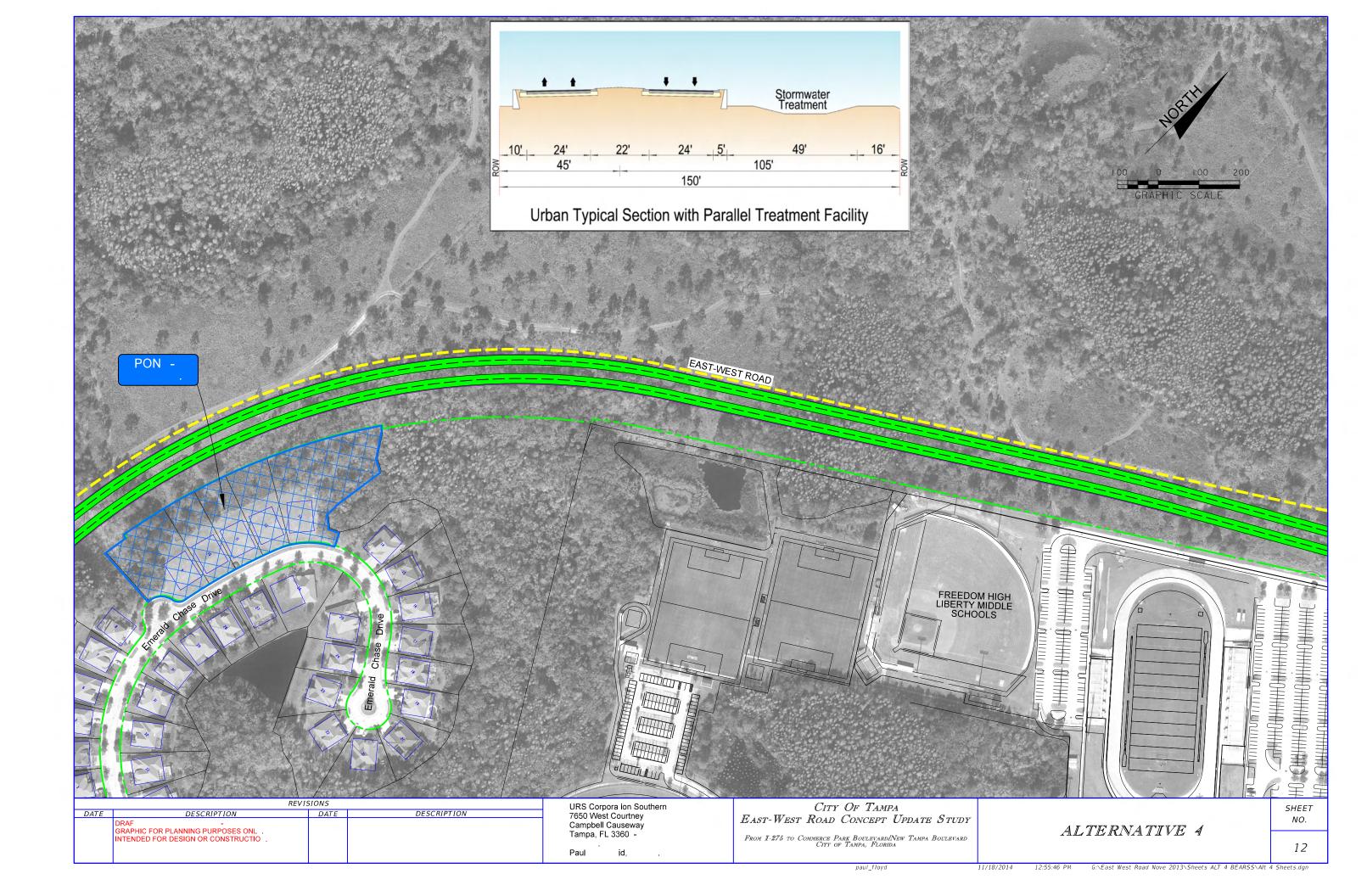



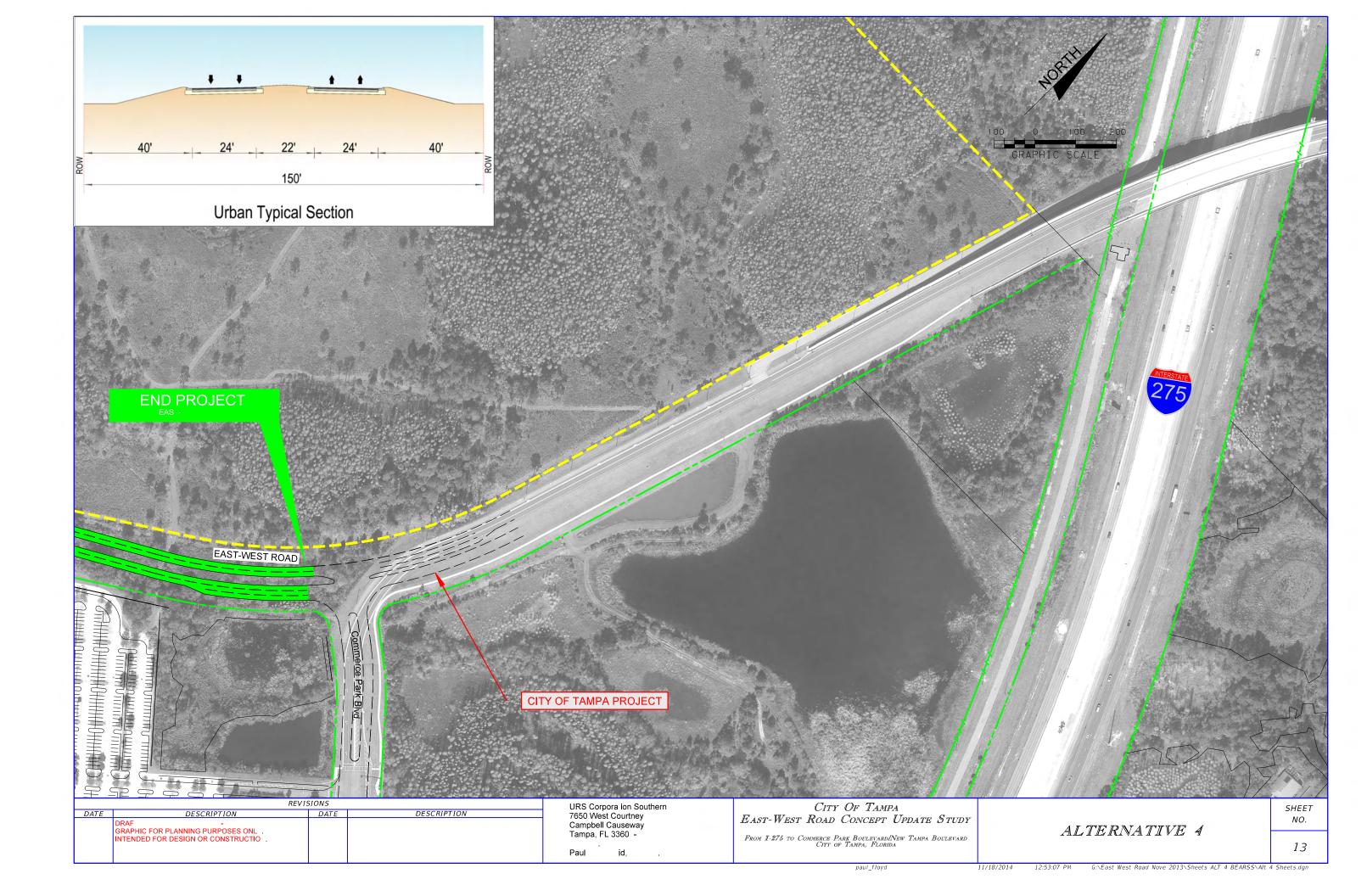
















# URS CORPORATION EAST WEST ROAD ALTERNATE 4 (4 LANES)

Preliminary Cost Estimate March 10, 2015

| DESCRIPTION                              | Alternative 4                       |
|------------------------------------------|-------------------------------------|
|                                          | Directional                         |
|                                          | Toll Option                         |
| EAST-WEST ROAD (Urban 4 Lane Divided)    | \$73,537,000                        |
| Roadway                                  | \$23,834,831                        |
| Bridges                                  | \$49,702,169                        |
| RAMPS                                    | \$13,685,000                        |
| Roadway                                  | \$9,828,188                         |
| Bridges                                  | \$3,856,812                         |
| ACMOTOLICAL YOUR                         | 607.000.000                         |
| CONSTRUCTION TOTAL  Design Faces (12.0%) | <b>\$87,222,000</b><br>\$10,466,640 |
| Design Fees (12.0%)<br>CE&I Fees (15.0%) | \$1,569,996                         |
| Mitigation                               | \$3,132,570                         |
| Permitting (2.0%)                        | \$62,651                            |
| Change Order Contingency (5.0%)          | \$4,517,729                         |
| 4 LANE PROJECT DEVELOPMENT TOTAL         | \$106,971,586                       |

| EXPRESS LANES (NB & SB) ON I-275        | \$41,396,000 |
|-----------------------------------------|--------------|
| Roadway                                 | \$41,396,000 |
|                                         |              |
| CONSTRUCTION TOTAL                      | \$41,396,000 |
| Design Fees (12.0%)                     | \$4,967,520  |
| CE&I Fees (15.0%)                       | \$6,209,400  |
| Mitigation (All mitigation incl. above) | \$0          |
| Permitting (2.0%)                       | \$827,920    |
| Change Order Contingency (5.0%)         | \$2,069,800  |
| I-275 EXPRESS LANES DEVELOPMENT TOTAL   | \$55,470,640 |

| PROJECT TOTAL COST | \$162,442,226 |
|--------------------|---------------|
|                    |               |

#### NOTES:

- 1. Costs for all other bridges are based on average span AASHTO girder
- Costs do not include Right of Way acquisition.
   Costs do not include legal or administrative costs.
- 4. Costs include a gantry type open road toll collection facility.5. All mitigation costs are included in the initial 4 Lane project.
- 6. All costs are present day cost.

#### City of Tampa - East / West Road Concept Update PD&E Study

Alternative 4 - Urban 4 Lane

Construction Cost Estimate

**URS Corporation / GLF** 

| nstruction Cost Estimate DESCRIPTION |                                               | OHANTITY   | HAUT  | U.P.           | poration / GLF |
|--------------------------------------|-----------------------------------------------|------------|-------|----------------|----------------|
| DESCRIPTION                          |                                               | QUANTITY   | UNII  | U.F.           | C051           |
| ROADWAY                              |                                               |            |       |                | \$17,128,929   |
| CLEARING & GRUBBING                  |                                               | 29.44      | ac    | \$25,000.00    | \$736,000      |
| EROSION CONTROL                      |                                               | 1.619      | mi    | \$29,257.26    | \$47,371       |
| REGULAR EXCAVATION                   |                                               | 24,618     | су    | \$4.97         | \$122,351      |
| EMBANKMENT (BORROW)(BANK             | MEAS.)                                        | 182,685    | СУ    | \$16.00        | \$2,922,960    |
| POND CONSTRUCTION                    | 1 acres each                                  | 4.00       | each  | \$153,331.30   | \$613,325      |
| STORM DRAINAGE SYSTEM                | NDU                                           | 1.62       | miles | \$1,217,678.46 | \$1,971,578    |
| TYPE 8 STABILIZATION                 |                                               | 49,071     | sy    | \$3.79         | \$185,979      |
| ROADWAY BASE - OPTIONAL BAS          | SE, BASE GROUP 11                             | 46,545     | sy    | \$22.31        | \$1,038,419    |
| ROADWAY ASPHALT - SUPERPAY           | VE ASPHALTIC CONC, TRAFFIC D (4 inches)       | 10,135.0   | tons  | \$104.47       | \$1,058,803    |
| SHOULDER BASE -                      |                                               |            | sy    |                |                |
| SHOULDER ASPHALT- (inches)           |                                               |            | tons  |                |                |
| ASPHALT CONCRETE FRICTION            | COURSE, INC BIT, FC-5, PG 76-22, PMA          | 1,959.0    | tons  | \$132.53       | \$259,626      |
| MILLING / OVERLAY                    |                                               |            | sy    |                |                |
| CONCRETE CURB & GUTTER, TY           | PE E                                          | 17,098     |       | \$21.33        | \$364,700      |
| CONCRETE SIDEWALK AND DRIV           |                                               |            | sy    | \$33.06        | *              |
| MISCELLANEOUS ASPHALT PAVE           |                                               |            | tons  | \$168.54       |                |
| SHOULDER GUTTER- CONCRETE            |                                               |            | If    | \$19.41        |                |
| PERFORMANCE TURF                     | 10% Sod                                       | 94,039     | sv    | \$0.62         | \$58,304       |
| SIGNS (Post & Misc.)                 |                                               |            | Miles | \$7,155.00     | \$11,585       |
| 43                                   | PEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6". | 3.000      |       | \$2,032.25     | \$6,097        |
| -/                                   | PEN GRADED ASPHALT SURFACES WHITE, SOLID, 6   | 6.000      |       | \$4,633.02     | \$27,798       |
| RETRO-REFLECTIVE PAVEMENT            |                                               | 396        |       | \$3.75         | \$1,485        |
| TRUSS SIGNS - None                   |                                               |            | ea    |                |                |
|                                      |                                               | 1          | ea    |                |                |
| LIGHTING                             | Conventional (Average Pole Spacing)           | 43         | ea    | \$10,050.66    | \$432,178      |
| TRAFFIC SIGNALS (Model 1)            | None                                          |            |       |                |                |
| TRAFFIC SIGNALS (Model 2)            | None                                          |            |       |                |                |
| TRAFFIC SIGNALS (Model 3)            | None                                          |            |       |                |                |
| Extra Items                          |                                               |            |       |                |                |
| CONCRETE CLASS NS, GRAVITY           | WALL                                          | 2768       | C.Y.  | \$548.80       | \$1,519,078    |
| RETAINING WALL SYSTEM, PERM          |                                               | 37564      |       | \$34.24        | \$1,286,191    |
|                                      | RRIER, WITH JUNCTION SLAB, 42" F SHAPE        |            | L.F.  | \$278.66       | \$668,784      |
| MEDIAN CONCRETE BARRIER W            |                                               |            | L.F.  | \$195.74       | \$234,888      |
| ITS/Tolling                          |                                               |            | EA    | \$3,500,000.00 | \$3,500,000    |
| *                                    | TURE, F&I, CANTILEVER, 41-50 FT               |            | EA    | \$61,425.50    | \$61,426       |
|                                      |                                               |            |       |                | ****           |
| STRUCTURES                           |                                               |            |       |                | \$35,718,520   |
| APPROACH SLAB CONCRETE               |                                               | 639        | су    | \$379.51       | \$242,590      |
| APPROACH SLAB REINFORCING            |                                               | 134,236    | -     | \$1.12         | \$150,345      |
| EW West Bridge                       | PRESTR CONC GIRDER (SIMPLE SPAN)              | 133,920.00 | sf    | \$103.50       | \$13,860,720   |
|                                      |                                               |            |       |                |                |

| STRUCTURES              |                                  |            |     |          | \$35,718,520 |
|-------------------------|----------------------------------|------------|-----|----------|--------------|
| APPROACH SLAB CONCRETE  |                                  | 639        | су  | \$379.51 | \$242,590    |
| APPROACH SLAB REINFORCE | ING                              | 134,236    | lbs | \$1.12   | \$150,345    |
| EW West Bridge          | PRESTR CONC GIRDER (SIMPLE SPAN) | 133,920.00 | sf  | \$103.50 | \$13,860,720 |
| EVV Middle Bridge       | PRESTR CONC GIRDER (SIMPLE SPAN) | 44,640.00  | sf. | \$103.50 | \$4,620,240  |
| EW East Bridge          | PRESTR CONC GIRDER (SIMPLE SPAN) | 162,750.00 | sf  | \$103.50 | \$16,844,625 |

| SUBTOTAL     |                    | \$52,847,449 |
|--------------|--------------------|--------------|
| MOT          | 10.0%              | \$5,284,745  |
| Mobilization | 10.0%              | \$5,813,219  |
| SUBTOTAL     |                    | \$63,945,413 |
| Contingency  | 15.0%              | \$9,591,812  |
| CONSTRUCTION | ON TOTAL (Rounded) | \$73,537,000 |

#### City of Tampa - East / West Road Concept Update PD&E Study

Alt 4 I-275 to EW XPRS Interchange w/S Ramps

Construction Cost Estimate

**URS Corporation / GLF** 

| ESCRIPTION                                                             | QUANTITY | UNIT             | U.P.         | COST        |
|------------------------------------------------------------------------|----------|------------------|--------------|-------------|
| ROADWAY                                                                |          |                  |              | \$7,063,109 |
| CLEARING & GRUBBING                                                    | 7.29     | ac               | \$25,000.00  | \$182,25    |
| EROSION CONTROL                                                        | 0.251    | mi               | \$30,699.38  | \$7,69      |
| REGULAR EXCAVATION                                                     | 3,813    | СУ               | \$4.97       | \$18,94     |
| EMBANKMENT (BORROW)(BANK MEAS.)                                        | 146,134  | СУ               | \$16.00      | \$2,338,14  |
| POND CONSTRUCTION 1 acres each                                         | 4.00     | each             | \$153,331.30 | \$613,32    |
| STORM DRAINAGE SYSTEM NDR                                              | 0.25     | miles            | \$287,234.36 | \$72,02     |
| TYPE B STABILIZATION                                                   | 27,313   | sy               | \$3.79       | \$103,51    |
| ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11                            | 19,272   | \$y              | \$22.31      | \$429,95    |
| ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)       | 4,224.0  | tons             | \$104.47     | \$441,28    |
| SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07                           | 5,884.0  | sy               | \$41.78      | \$245,83    |
| SHOULDER ASPHALT- SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)       | 1,294.0  | tons             | \$95.15      | \$123,12    |
| ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA         | 801.0    | tons             | \$132.53     | \$106,15    |
| MILLING / OVERLAY                                                      |          | sy               |              |             |
| CONCRETE CURB & GUTTER, TYPE E                                         | 2,648    | If               | \$21.33      | \$56,48     |
| CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK                              |          | sy               | \$33.06      |             |
| MISCELLANEOUS ASPHALT PAVEMENT                                         |          | tons             | \$168.54     |             |
| SHOULDER GUTTER- CONCRETE                                              |          | If               | \$19.41      |             |
| PERFORMANCE TURF 10% Sod                                               | 9,856    | sy               | \$0.62       | \$6,11      |
| SIGNS (Post & Misc.)                                                   | 0.25     | Miles            | \$8,109.00   | \$2,03      |
| THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 8". | 1.000    | N.M.             | \$2,032.25   | \$2,03      |
| THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6   | 2.000    | N.M.             | \$4,633.02   | \$9,26      |
| RETRO-REFLECTIVE PAVEMENT MARKERS                                      | 132      | ea               | \$3.75       | \$49        |
| TRUSS SIGNS - None                                                     |          | 63               |              |             |
| CANTILEVER SIGNS - None                                                |          | ea               |              |             |
| LIGHTING Conventional (Average Pole Spacing)                           | 7        | ęa               | \$10,050.66  | \$70,35     |
| TRAFFIC SIGNALS (Model 1) None                                         |          |                  |              |             |
| TRAFFIC SIGNALS (Model 2) None                                         |          |                  |              |             |
| TRAFFIC SIGNALS (Model 3) None                                         |          |                  |              |             |
| xtra Items                                                             |          |                  |              |             |
| RETAINING WALL SYSTEM, PERMANANT, EXCLUDING BARRIER                    | 36952    | S.F.             | \$34.24      | \$1,265,23  |
| CONCRETE TRAFFIC RAILING BARRIER, WITH JUNCTION SLAB, 42" F SHAPE      | 2400     | L.Fa             | \$278.66     | \$668,78    |
| MEDIAN CONCRETE BARRIER WALL                                           | 1324     | L.Fa             | \$195.74     | \$259,16    |
| SHOULDER CONCRETE BARRIER WALL, RIGID RETAINING                        | 300      | L.E <sub>2</sub> | \$136.31     | \$40,89     |

| STRUCTURES                |                                  |           |     |          | \$2,771,730 |
|---------------------------|----------------------------------|-----------|-----|----------|-------------|
| APPROACH SLAB CONCRETE    |                                  | 312       | су  | \$379.51 | \$118,252   |
| APPROACH SLAB REINFORCING |                                  | 65,434    | lbs | \$1.12   | \$73,286    |
| I-275 / EW Interchange    | PRESTR CONC GIRDER (SIMPLE SPAN) | 16,864.00 | sf  | \$153.00 | \$2,580,192 |

PSR COT East West (Alt 4) 10-28-14.xlsm

| SUBTOTAL     |                     | \$9,834,840  |
|--------------|---------------------|--------------|
| MOT          | 10.0%               | \$983,484    |
| Mobilization | 10.0%               | \$1,081,832  |
| SUBTOTAL.    |                     | \$11,900,166 |
| Contingency  | 15.0%               | \$1,785,023  |
| CONSTRUCT    | ION TOTAL (Rounded) | \$13,685,000 |

## City of Tampa - East / West Road Concept Update PD&E Study

Alt 4 I-275 From Interchange 4 Lanes Roadway (South)

Construction Cost Estimate

**URS Corporation / GLF** 

| CLEARING & GRUBBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESCRIPTION                |                                               | QUANTITY | UNIT             | U.P.           | COST         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|----------|------------------|----------------|--------------|
| CLEARING & GRUBBING   29.38 ac   \$25,000.00   \$734,500   EROSION CONTROL   21.496 mil   \$24,386.88   \$36,491   \$113,063   \$24,386.88   \$36,491   \$113,063   \$24,386.88   \$36,491   \$113,063   \$24,386.98   \$36,491   \$113,063   \$24,386.98   \$36,491   \$113,063   \$24,386.98   \$36,491   \$13,063   \$24,386.98   \$36,491   \$36,391.00   \$22,515,120   \$200 NO CONSTRUCTION   1 acres each   4.00   each   \$153,331.30   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325   \$513,325 | ROADWAY                    |                                               |          |                  |                | \$17,116,467 |
| REGULAR EXCAVATION EMBANKMENT (BORROW)(BANK MEAS.) EMBANKMENT (BORROW)(BANK MEAS.) POND CONSTRUCTION 1 acres each S157,195 cy 157,195 cy 1513,033 130 32,515,120 POND CONSTRUCTION 1 acres each S153,331.30 S613,325 STORM DRAINAGE SYSTEM WDR 1.50 miles S143,887.42 S215,286 TYPE B STABILIZATION ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11 ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches) SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07 SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07 SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07 SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA SHOULDER ASPHALT SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA SHOULDER GUTTER THOTON COURSE, INC BIT, FC-5, PG 76-22, PMA SHOULDER GUTTER SIDEWALK AND DRIVEWAYS, 4" THICK SY S330,6 MISCELLANEOUS ASPHALT PAVEMENT CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK SY S330,6 MISCELLANEOUS ASPHALT PAVEMENT THORMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. S103,056,078 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. S2,032.25 S12,194 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. S4,633,02 S455,598 RETRO-REFLECTIVE PAVEMENT MARKERS PER CONCRETE PRICTIVE PAVEMENT MARKERS PER CONCRETE SIGNS - None CANTILEVER SIGNS - NONE CANTILETER - N                                                                                                                                                                             | CLEARING & GRUBBING        |                                               | 29.38    | ac               | \$25,000.00    | \$734,500    |
| EMBANKMENT (BORROW)(BANK MEAS.) POND CONSTRUCTION 1 acres each 4.00 each \$153,335 .00 \$513,325 STORM DRAINAGE SYSTEM WDR 1.50 miles \$143,887.42 \$215,286 STORM DRAINAGE SYSTEM WDR 1.50 miles \$143,887.42 \$215,286 STORM DRAINAGE SYSTEM WDR 1.23,468 by \$3.79 \$467,944 ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11 71,100 by \$2.231 \$1,586,241 ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11 71,100 by \$2.231 \$1,586,241 ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches) 15,545.0 tons \$104.47 \$1,623,986 SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07 35,111.0 by \$41.76 \$1,623,986 SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) 7,724.0 tons \$95.15 \$734,939 ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA 2,969.0 tons \$192.53 \$393,482 MILLING / OVERLAY - Mill 2,5" - Overlay 2,5" 42,133 by \$9.81 \$413,298 CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK by \$9.33.06 CONCRETE CURB & GUTTER, TYPE E 15,800 If \$21.33 \$337,014 CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK by \$9.33.06 MISCELLANEOUS ASPHALT PAVEMENT tons \$168.54 SHOULDER GUTTER - CONCRETE 10% Sod 30,722 by \$0.62 \$19,048 SIGNS (Post & Misc.) 1.50 Miles \$13,356.00 \$19,983 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.00 N.M. \$4,633.02 \$55,596 RETO-REFLECTIVE PAVEMENT MARKERS 69.20 STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6", 6.00 N.M. \$4,633.02 \$55,596 RETO-REFLECTIVE PAVEMENT MARKERS 792 ea \$3.75 \$2,970 TRUSS SIGNS - None ea \$3.75 \$2,970 TRUSS SIGNS - None CANTILEVER SIGNS - None ea \$3.75 \$2,970 TRUSS SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None Extra Islams  MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EROSION CONTROL            |                                               | 1.496    | mi               | \$24,388.98    | \$36,491     |
| ## POND CONSTRUCTION 1 acres each 4.00 each \$153,331.30 \$613,325 \$TORM DRAINAGE SYSTEM WDR 1.50 miles \$143,887.42 \$215,286 TYPE B STABILIZATION 123.468 sy \$3.79 \$467,944 ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11 71,100 sy \$2.231 \$1,586,241 ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches) 15,545.0 tons \$104.47 \$1,623,986 SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07 35,111.0 sy \$41.78 \$1,466,938 SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) 7,724.0 tons \$95.15 \$734,939 ASPHALT C ONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA 2,969.0 tons \$132.53 \$393,402 MILLING / OVERLAY - MIII 2.5" - Overlay 2.5" 42,133 sy \$9.81 \$413,298 CONCRETE CURB & GUTTER, TYPE E 15,800 If \$21.33 \$337,014 CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK sy \$33.06 MISCELLANEOUS ASPHALT PAVEMENT tons \$168.54 SHOULDER GUTTER - CONCRETE PERFORMANCE TURF 10% Spd 30,722 sy \$0.62 \$19,048 SIGNS (Post & Misc.) THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6" 6.000 N.M. \$2,032.25 \$12,194 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6" 6.000 N.M. \$4,633.02 \$55,586 RETRO-REFLECTIVE PAVEMENT 62 CONVENTIONAL (Average Pole Spacing) 40 ea \$10,050.66 \$402,026 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None  Extra Identation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REGULAR EXCAVATION         |                                               | 22,749   | су               | \$4.97         | \$113,063    |
| STORM DRAINAGE SYSTEM   WDR   1.50 miles   \$143,887.42   \$215,286   TYPE B STABILIZATION   123,468   Sy   \$3.79   \$467,944   ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11   71,100   Sy   \$22.31   \$1,586,241   ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)   15,545.0   tons   \$104.47   \$1,669,938   SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07   36,111.0   Sy   \$41.78   \$1,466,938   SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07   36,111.0   Sy   \$41.78   \$1,466,938   SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)   7,724.0   tons   \$95.15   \$734,939   ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA   2,969.0   tons   \$132.53   \$393,492   MILLING / OVERLAY   - MIII 2.5" - Overlay 2.5"   42,133   Sy   \$9.81   \$413,298   CONCRETE CURB & GUTTER, TYPE E   15,800   If   \$21.33   \$337,014   CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK   Sy   \$33.06   MISCELLANEOUS ASPHALT PAVEMENT   tons   \$168.54   SHOULDER GUTTER. CONCRETE   10% Sod   30,722   Sy   \$0.62   \$19,048   SIGNS (Post & Misc.)   1.50   Miles   \$13,356.00   \$19,048   SIGNS (Post & Misc.)   1.50   Miles   \$13,356.00   \$19,048   THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000   N.M.   \$4,633.02   \$55,598   RETRO-REFLECTIVE PAVEMENT MARKERS   792   ea   \$3.75   \$2,970   TRAFFIC SIGNALS (Model 1)   None   CANTILEVER SIGNS - None   ea   CANTILEVER SIGNS - None   ea   CANTILEVER SIGNS - None   CANTILEVER SIGNS - None   CANTILEVER SIGNS - None   CANTILEVER SIGNALS (Model 2)   None   TRAFFIC SIGNALS (Model 2)   None   TRAFFIC SIGNALS (Model 3)   None   CANTILEVER SIGNALS (MODEL 2)   NONE   CANTILEVER SIGNALS (MODEL 2)                                                                                                                                                | EMBANKMENT (BORROW)(BAN)   | (MEAS.)                                       | 157,195  | су               | \$16.00        | \$2,515,120  |
| TYPE B STABILIZATION ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11 ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches) SHOULDER BASE - OPTIONAL BASE, BASE GROUP O7 SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) ROBERT - MILLING / OVERLAY AMBRIT - OVERLAY CONCRETE CURB & GUTTER, TYPE E CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK SUPERPAVE ASPHALT PAVEMENT SHOULDER GUTTER - CONCRETE PERFORMANCE TURF PERFORMANCE TURF 10% Sod SIGNS (Post & Misc.) THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6" GOOD N.M. SCAUSC STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STANDARD - OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" FUND STAND                                                                                                                                                                             | POND CONSTRUCTION          | 1 acres each                                  | 4.00     | each             | \$153,331.30   | \$613,325    |
| ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11  ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)  SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07  SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07  SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA  ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA  MILLING / OVERLAY  MILLING / OVERLAY  MILLING / OVERLAY  MILLING / OVERLAY  MISTER SIDEWALK AND DRIVEWAYS, 4" THICK  SY  SOUNDER SUPEWALK AND DRIVEWAYS, 4" THICK  SY  STAMPALT PAVEMENT  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK  SY  STAMPALT PAVEMENT  SHOULDER GUTTER- CONCRETE  BISSON (POST & Misc.)  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$19,048  REFRO-REFICETIVE PAVEMENT MARKERS  RETRO-REFILECTIVE PAVEMENT MARKERS  RETRO-REFILECTIVE PAVEMENT MARKERS  RETRO-REFILECTIVE PAVEMENT MARKERS  TRUSS SIGNS - None  CANTILEVER SIGNS (Model 1) None  TRAFFIC SIGNALS (Model 2) None  TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL  7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STORM DRAINAGE SYSTEM      | WDR                                           | 1.50     | miles            | \$143,887.42   | \$215,286    |
| ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)  SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07  SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT CONCRETE FRICTION COURSE, INC. BIT, FC-5, PG 76-22, PMA  ASPHALT CONCRETE FRICTION COURSE, INC. BIT, FC-5, PG 76-22, PMA  ASPHALT CONCRETE FRICTION COURSE, INC. BIT, FC-5, PG 76-22, PMA  ASPHALT CONCRETE FRICTION COURSE, INC. BIT, FC-5, PG 76-22, PMA  ASPHALT CONCRETE SUPERPAVE ASPHALT PG 5, PG 76-22, PMA  ASPHALT CONCRETA GUITTER, TYPE E  CONCRETE CURB & GUTTER, TYPE E  15,800 If \$21.33 \$333,06 tons  \$132.53 \$393,482  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK  SY \$330.66  MISCELLANEOUS ASPHALT PAVEMENT  SHOULDER GUTTER- CONCRETE  15,800 If \$19.41 \$306,678  SIGNS (POST & Misc.)  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2.032.25  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2.032.25  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SCID, 6  RETRO-REFLECTIVE PAVEMENT MARKERS  TO BE AS SIGNS - None  CANTILEVER SIGNS - None  LIGHTING CONVENTIONAL (Average Pole Spacing)  TRAFFIC SIGNALS (Model 1) None  TRAFFIC SIGNALS (Model 2) None  TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL.  7800 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE B STABILIZATION       |                                               | 123,468  | sy               | \$3.79         | \$467,944    |
| SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07  SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)  ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA  2,969.0 tons  \$132.53  \$393.462  MILLING / OVERLAY  - Mill 2.5" - Overlay 2.5"  42,133 sy  \$9.81  \$413.288  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK  sy  \$330.6  MISCELLANEOUS ASPHALT PAVEMENT  tons  \$168.54  SHOULDER GUTTER - CONCRETE  15,800 if  \$19.41  \$306,678  PERFORMANCE TURF  10% Sod  30,722 sy  \$0.62  \$19,048  SIGNS (Post & Misc.)  1.50 Miles  \$13,356.00  \$19,963  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6",  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6",  TREMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6  RETRO-REFLECTIVE PAVEMENT MARKERS  RETRO-REFLECTIVE PAVEMENT MARKERS  TYPE  ea  \$3.75  \$2,970  TRUSS SIGNS - None  CANTILEVER SIGNS - None  CANTILEVER SIGNS - None  CANTILEVER SIGNS - None  CANTILEVER SIGNS (Model 1)  None  TRAFFIC SIGNALS (Model 2)  None  TRAFFIC SIGNALS (Model 2)  None  Extra Items  MEDIAN CONCRETE BARRIER WALL  7800 L.F.  \$195.74  \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROADWAY BASE - OPTIONAL BA | ASE, BASE GROUP 11                            | 71,100   | sy               | \$22.31        | \$1,586,241  |
| SHOULDER ASPHALT- SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches) 7,724.0 tons \$95.15 \$734,939  ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA 2,969.0 tons \$132.53 \$393,482  MILLING / OVERLAY - Mill 2.5" - Overlay 2.5" 42,133 sy \$9.81 \$413,298  CONCRETE CURB & GUTTER, TYPE E 15,800 if \$21.33 \$337,014  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK sy \$330.6  MISCELLANEOUS ASPHALT PAVEMENT tons \$168.54  SHOULDER GUTTER- CONCRETE 15,800 if \$19.41 \$306,678  SHOULDER GUTTER- CONCRETE 10% Sod 30,722 sy \$0.62 \$19,048  SIGNS (Post & Misc.) 1,500 Miles \$13,356.00 \$19,963  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$12,194  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6", 6.000 N.M. \$4,633.02 \$55,596  RETRO-REFLECTIVE PAVEMENT MARKERS 792 ea \$3.75 \$2,970  TRUSS SIGNS - None ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROADWAY ASPHALT - SUPERPA  | AVE ASPHALTIC CONC, TRAFFIC D (4 inches)      | 15,545.0 | tons             | \$104.47       | \$1,623,986  |
| ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA  MILLING / OVERLAY - MIII 2.5" - Overlay 2.5"  MILLING / OVERLAY - MIII 2.5" - Overlay 2.5"  CONCRETE CURB & GUTTER, TYPE E  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK  MISCELLANEOUS ASPHALT PAVEMENT  SHOULDER GUTTER - CONCRETE  PERFORMANCE TURF  PERFORMANCE TURF  10% Sod  30,722 sy  \$0.62  \$19,048  SIGNS (Post & Misc.)  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000  RETRO-REFLECTIVE PAVEMENT MARKERS  RETRO-REFLECTIVE PAVEMENT MARKERS  THUS SIGNS - None  CANTILEVER SIGNS - None  LIGHTING  Conventional (Average Pole Spacing)  TRAFFIC SIGNALS (Model 1)  None  TRAFFIC SIGNALS (Model 2)  None  Extra Items  MEDIAN CONCRETE BARRIER WALL.  7800 L.F. \$195.74  \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SHOULDER BASE - OPTIONAL B | ASE, BASE GROUP 07                            | 35,111.0 | sy               | \$41.78        | \$1,466,938  |
| MILLING / OVERLAY - Mill 2.5" - Overlay 2.5" 42,133 sy \$9.81 \$413,298 CONCRETE CURB & GUTTER, TYPE E 15,800 if \$21.33 \$337,014 CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK sy \$33.06 MISCELLANEOUS ASPHALT PAVEMENT tons \$168.54 SHOULDER GUTTER - CONCRETE 10% Sod 30,722 sy \$0.62 \$19,048 SIGNS (Post & Misc.) 15,800 if \$19,41 \$306,678 PERFORMANCE TURF 10% Sod 30,722 sy \$0.62 \$19,048 SIGNS (Post & Misc.) 1.50 Miles \$13,356.00 \$19,983 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$12,194 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 12,000 N.M. \$4,633.02 \$55,596 RETRO-REFLECTIVE PAVEMENT MARKERS 792 ea \$3.75 \$2,970 TRUSS SIGNS - None ea CANTILEVER SIGNS - None ea CANTILEVER SIGNS - None LIGHTING Conventional (Average Pole Spacing) 40 ea \$10,050.66 \$402,026 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SHOULDER ASPHALT- SUPERPA  | AVE ASPHALTIC CONC, TRAFFIC C (4 inches)      | 7,724.0  | tons             | \$95.15        | \$734,939    |
| CONCRETE CURB & GUTTER, TYPE E  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK  MISCELLANEOUS ASPHALT PAVEMENT  SHOULDER GUTTER- CONCRETE  PERFORMANCE TURF  10% Sod  SIGNS (POST & Misc.)  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$12,194  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SCID, 6 12.000 N.M. \$4,633.02 \$55,596  RETRO-REFLECTIVE PAVEMENT MARKERS  792 ea \$3.75 \$2,970  TRUSS SIGNS - None  CANTILEVER SIGNS - None  LIGHTING  Conventional (Average Pole Spacing)  TRAFFIC SIGNALS (Model 1) None  TRAFFIC SIGNALS (Model 2) None  TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL  15,800 If \$21.33  \$337,014  \$21.33  \$337,014  \$15,800 If \$21.33  \$337,014  \$10.050.66  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.050.67  \$10.0                                                   | ASPHALT CONCRETE FRICTION  | COURSE, INC BIT, FC-5, PG 78-22, PMA          | 2,969.0  | tons             | \$132.53       | \$393,482    |
| CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK  MISCELLANEOUS ASPHALT PAVEMENT  SHOULDER GUTTER- CONCRETE  SHOULDER GUTTER- CONCRETE  15,800 if \$19,41 \$306,678  PERFORMANCE TURF 10% Sod 30,722 sy \$0.62 \$19,048  SIGNS (Post & Misc.)  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$12,194  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 12.000 N.M. \$4,633.02 \$55,596  RETRO-REFLECTIVE PAVEMENT MARKERS 792 ea \$3.75 \$2,970  TRUSS SIGNS - None  CANTILEVER SIGNS - None  LIGHTING Conventional (Average Pole Spacing) 40 ea \$10,050.66 \$402,026  TRAFFIC SIGNALS (Model 1) None  TRAFFIC SIGNALS (Model 2) None  TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MILLING / OVERLAY          | - Mill 2.5" - Overlay 2.5"                    | 42,133   | sy               | \$9.81         | \$413,298    |
| MISCELLANEOUS ASPHALT PAVEMENT SHOULDER GUTTER- CONCRETE SHOULDER GUTTER- CONCRETE 10% Sod 15,800 if \$19,41 \$306,678 PERFORMANCE TURF 10% Sod 30,722 sy \$0.62 \$19,048 SIGNS (Post & Misc.) 1.50 Miles \$13,356.00 \$19,983 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$12,194 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 12.000 N.M. \$4,633.02 \$55,596 RETRO-REFLECTIVE PAVEMENT MARKERS 792 ea \$3.75 \$2,970 TRUSS SIGNS - None CANTILEVER SIGNS - None LIGHTING Conventional (Average Pole Spacing) 40 ea \$10,050.66 \$402,026 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None Extra Items MEDIAN CONCRETE BARRIER WALL. 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONCRETE CURB & GUTTER, T  | YPEE                                          | 15,800   | If               | \$21.33        | \$337,014    |
| SHOULDER GUTTER- CONCRETE       15,800 If       \$19,41       \$306,678         PERFORMANCE TURF       10% Sod       30,722 sy       \$0.62       \$19,048         SIGNS (Post & Misc.)       1.50 Miles       \$13,356.00       \$19,983         THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6".       6.000 N.M.       \$2,032.25       \$12,194         THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6       12.000 N.M.       \$4,633.02       \$55,596         RETRO-REFLECTIVE PAVEMENT MARKERS       792 ea       \$3.75       \$2,970         TRUSS SIGNS - None       ea       ea         CANTILEVER SIGNS - None       ea       ea         LIGHTING       Conventional (Average Pole Spacing)       40 ea       \$10,050.66       \$402,026         TRAFFIC SIGNALS (Model 1)       None       TRAFFIC SIGNALS (Model 2)       None       TRAFFIC SIGNALS (Model 3)       None         Extra Items         MEDIAN CONCRETE BARRIER WALL       7900 L.F.       \$195.74       \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONCRETE SIDEWALK AND DRI  | VEWAYS, 4" THICK                              |          | sy               | \$33.06        |              |
| PERFORMANCE TURF       10% Sod       30,722 sy       \$0.62       \$19,048         SIGNS (Post & Misc.)       1.50 Miles       \$13,356.00       \$19,983         THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M.       \$2,032.25       \$12,194         THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6       12,000 N.M.       \$4,633.02       \$55,596         RETRO-REFLECTIVE PAVEMENT MARKERS       792 ea       \$3.75       \$2,970         TRUSS SIGNS - None       ea       \$2,970         CANTILEVER SIGNS - None       ea       \$10,050.66       \$402,026         TRAFFIC SIGNALS (Model 1)       None       \$10,050.66       \$402,026         TRAFFIC SIGNALS (Model 2)       None       \$1,546,346         Extra Items       7900 L.F.       \$195.74       \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MISCELLANEOUS ASPHALT PAV  | /EMENT                                        |          | tons             | \$168.54       |              |
| SIGNS (Post & Misc.)   1.50   Miles   \$13,356.00   \$19,983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHOULDER GUTTER- CONCRET   | TE.                                           | 15,800   | if               | \$19.41        | \$306,678    |
| THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 6.000 N.M. \$2,032.25 \$12,194 THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 12.000 N.M. \$4,633.02 \$55,596 RETRO-REFLECTIVE PAVEMENT MARKERS 792 ea \$3.75 \$2,970 TRUSS SIGNS - None ea CANTILEVER SIGNS - None ea LIGHTING Conventional (Average Pole Spacing) 40 ea \$10,050.66 \$402,026 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None Extra Items MEDIAN CONCRETE BARRIER WALL. 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PERFORMANCE TURF           | 10% Sod                                       | 30,722   | sy               | \$0.62         | \$19,048     |
| THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6  RETRO-REFLECTIVE PAVEMENT MARKERS  792 ea \$3.75 \$2,970  TRUSS SIGNS - None  CANTILEVER SIGNS - None  LIGHTING  Conventional (Average Pole Spacing)  TRAFFIC SIGNALS (Model 1)  None  TRAFFIC SIGNALS (Model 2)  None  TRAFFIC SIGNALS (Model 3)  None  Extra Items  MEDIAN CONCRETE BARRIER WALL  7900 L.F. \$195.74  \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIGNS (Post & Misc.)       |                                               | 1.50     | Miles            | \$13,356.00    | \$19,983     |
| RETRO-REFLECTIVE PAVEMENT MARKERS       792 ea       \$3.75       \$2,970         TRUSS SIGNS - None       ea         CANTILEVER SIGNS - None       ea          LIGHTING       Conventional (Average Pole Spacing)       40 ea       \$10,050.66       \$402,026         TRAFFIC SIGNALS (Model 1)       None         TRAFFIC SIGNALS (Model 2)       None         Extra Items         MEDIAN CONCRETE BARRIER WALL       7900 L.F.       \$195.74       \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THERMOPLASTIC, STANDARD-C  | PEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", | 6.000    | N.M.             | \$2,032.25     | \$12,194     |
| TRUSS SIGNS - None       ea         CANTILEVER SIGNS - None       ea         LIGHTING       Conventional (Average Pole Spacing)       40 ea       \$10,050.66       \$402,026         TRAFFIC SIGNALS (Model 1)       None         TRAFFIC SIGNALS (Model 2)       None         TRAFFIC SIGNALS (Model 3)       None         Extra Items         MEDIAN CONCRETE BARRIER WALL       7900 L.F.       \$195.74       \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THERMOPLASTIC, STANDARD-C  | PEN GRADED ASPHALT SURFACES WHITE, SOLID, 6   | 12.000   | N.M.             | \$4,633.02     | \$55,598     |
| CANTILEVER SIGNS - None LIGHTING Conventional (Average Pole Spacing) 40 ea \$10,050.66 \$402,026 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None Extra Items MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RETRO-REFLECTIVE PAVEMENT  | T MARKERS                                     | 792      | ęa               | \$3.75         | \$2,970      |
| LIGHTING Conventional (Average Pole Spacing) 40 ea \$10,050.66 \$402,026 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None  Extra Items MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRUSS SIGNS - None         |                                               |          | ea               |                |              |
| TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None  Extra Items MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CANTILEVER SIGNS - None    |                                               |          | ea               |                |              |
| TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None  Extra Items MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIGHTING                   | Conventional (Average Pole Spacing)           | 40       | ea               | \$10,050.66    | \$402,026    |
| TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRAFFIC SIGNALS (Model 1)  | None                                          |          |                  |                |              |
| Extra Items  MEDIAN CONCRETE BARRIER WALL  7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRAFFIC SIGNALS (Model 2)  | None                                          |          |                  |                |              |
| MEDIAN CONCRETE BARRIER WALL 7900 L.F. \$195.74 \$1,546,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRAFFIC SIGNALS (Model 3)  | None                                          |          |                  |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extra Items                |                                               |          |                  |                |              |
| iTS/Tolling 1 EA \$3,500,000.00 \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEDIAN CONCRETE BARRIER V  | VALt.                                         | 7900     | LLF <sub>o</sub> | \$195.74       | \$1,546,346  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ITS/Tolling                |                                               | 1        | EA               | \$3,500,000.00 | \$3,500,000  |

| STRUCTURES                |     |          |  |
|---------------------------|-----|----------|--|
| APPROACH SLAB CONCRETE    | су  | \$379.51 |  |
| APPROACH SLAB REINFORCING | Ibs | \$1.12   |  |

| SUBTOTAL     |                     | \$17,116,467 |
|--------------|---------------------|--------------|
| MOT          | 10.0%               | \$1,711,647  |
| Mobilization | 10.0%               | \$1,882,811  |
| SUBTOTAL     |                     | \$20,710,926 |
| Contingency  | 15.0%               | \$3,106,639  |
| CONSTRUCT    | ION TOTAL (Rounded) | \$23,818,000 |

### City of Tampa - East / West Road Concept Update PD&E Study

Alt 4 I-275 From Interchange 2 Lanes Roadway (North)

Construction Cost Estimate

**URS Corporation / GLF** 

| CLEARING & GRUBBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | QUANTITY | UNIT  | U.P.         | COST         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|-------|--------------|--------------|
| CLEARING & GRUBBING   22.31   ac   \$25,000.00   \$557,750   EROSION CONTROL   11.136 mil \$24,388.98   \$27,715   EROSION CONTROL   17.278   cy   \$4.97   \$35,571,750   \$25,000.00   \$1.574,224   \$25,000.00   \$1.574,224   \$25,000.00   \$1.574,224   \$25,000.00   \$1.574,224   \$25,000.00   \$1.574,224   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000.00   \$25,000                        | BOADWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |          |       |              | \$12,632,566 |
| EROSION CONTROL         1.136 ml         \$24,388.98         \$27,715           REGULAR EXCAVATION         17,276 cy         \$4.97         \$85,871           EMBANKMENT (BORROW)(BANK MEAS.)         98,389 cy         \$16,00         \$1,574,224           POND CONSTRUCTION         1 acres each         4.00 each         \$153,331.30         \$613,325           STORM DRAINAGE SYSTEM         WDR         1.14 miles         \$143,887.42         \$163,508           TYPE B STABILIZATION         75,333 sy         \$3.79         \$285,512           ROADWAY ASPHALT - SUPERRAVE ASPHALTIC CONC, TRAFFIC D (4 inches)         8,287.0 tons         \$104.47         \$865,743           ROADWAY ASPHALT - SUPERRAVE ASPHALTIC CONC, TRAFFIC C (4 inches)         6,667.0 sy         \$41.78         \$1,141.47           SHOULDER ASPHALT - SUPERRAVE ASPHALTIC CONC, TRAFFIC C (4 inches)         6,667.0 tons         \$95.15         \$25.667.0 sy         \$41.78           ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA         1,595.0 tons         \$132.53         \$211,385           MILLING / OVERLAY         - Mill 2.5" - Overlay 2.5"         32.000         sy         \$9.81         \$313,390           CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK         5y         \$33.06         \$313,390         \$4.60         \$19.41         \$232,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Management of the Control of the Con |                                           | 22.31    | ac    | \$25,000,00  |              |
| REGULAR EXCAVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |          |       | •            |              |
| EMBANKMENT (BORROW)(BANK MEAS.)         98,389 by         \$16,00         \$1,574,224           POND CONSTRUCTION         1 acres each         4.00 each         \$153,331.30         \$613,325           STORM DRAINAGE SYSTEM         WOR         1.14 miles         \$143,867.42         \$163,508           TYPE B STABILIZATION         75,333 sy         \$3.79         \$285,512           ROADWAY BASE - OPTIONAL BASE. BASE GROUP 11         38,000 sy         \$22.231         \$847,780           ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)         26,667.0 sy         \$41.78         \$11,14,147           SHOULDER BASE - OPTIONAL BASE. BASE GROUP 07         26,667.0 sy         \$41.78         \$11,14,147           SHOULDER ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)         5,897.0 tons         \$95.15         \$556,245           ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA         1,595.0 tons         \$132,533         \$211,385           MILLING / OVERLAY         - MILI 2.5" - Overlay 2.5"         1         y         \$33.06         \$313,390           MISCELLANEOUS ASPHALT PAVEMENT         1         5         y         \$33.06         \$168.54           SHOULDER GUTTER- CONCRETE         1         1         1         1         \$19.41         \$232,920           PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 17,278   | CV    | \$4,97       | \$85,871     |
| POND CONSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MEAS.)                                   | 98,389   | CV    | \$16.00      | \$1,574,224  |
| TYPE B STABILIZATION     ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11     ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)     ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)     SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07     26,667.0 sy \$41.78     \$1,114,147     SHOULDER ASPHALT- SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)     ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA     1,595.0 tons \$192.53     \$132.53     \$123.53     \$132.53     \$133.300     If     CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK     SHOULDER GUTTER- CONCRETE     10% Sod     MISCELLANEOUS ASPHALT PAVEMENT     10% Sod     41,333     5y     \$10.000     \$108.54     \$108.54     SHOULDER GUTTER- CONCRETE     10% Sod     41,333     5y     \$0.000     \$108.54     \$133.356.00     \$151,177     THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 24,000     REFUGATION, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 24,000     REFUGATION, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 24,000     REFUGATION, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6", 24,000     RETURN SIGNS - None     CANTILLEYER SIGNS - None     CANTILLEYER SIGNS - None     CANTILLEYER SIGNS - None     CLIGHTING     CONOVENTIONAL (Average Pole Spacing)     TRAFFIC SIGNALS (Model 1)     None     TRAFFIC SIGNALS (Model 2)     None     TRAFFIC SIGNALS (Model 3)     None  Extra Itemse  MEDIAN CONCRETE BARRIER WALL  MEDIAN CONCRETE BARRIER WALL  MEDIAN CONCRETE BARRIER WALL      1 EA     \$3,500,000.00     \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                         | 4.00     | each  | \$153,331.30 | \$613,325    |
| ROADWAY BASE - OPTIONAL BASE, BASE GROUP 11   38,000 8y \$22.31   \$847,780   ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)   8,287.0 tons   \$104.47   \$865,743   \$840,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,000   \$100,0 | STORM DRAINAGE SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WOR                                       | 1.14     | miles | \$143,887.42 | \$163,508    |
| ROADWAY ASPHALT - SUPERPAVE ASPHALTIC CONC, TRAFFIC D (4 inches)   8,287.0 tons   \$104.47   \$865,743   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$1000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$10000   \$100000   \$100000   \$1000000   \$100000000   \$10000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TYPE B STABILIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 75,333   | sy    | \$3.79       | \$285,512    |
| SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07   26,667.0 sy   \$41.78   \$1,114,147   SHOULDER ASPHALT- SUPERPAVE ASPHALTIC CONC, TRAFFIC C (4 inches)   5,867.0 tons   \$95.15   \$558,245   ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA   1,595.0 tons   \$132.53   \$211,385   MILLING / OVERLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROADWAY BASE - OPTIONAL BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |          | sy    | \$22.31      | \$847,780    |
| SHOULDER BASE - OPTIONAL BASE, BASE GROUP 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROADWAY ASPHALT - SUPERPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |          | tons  | \$104.47     | \$865,743    |
| ASPHALT CONCRETE FRICTION COURSE, INC BIT, FC-5, PG 76-22, PMA 1,595.0 tons \$132.53 \$211,385  MILLING / OVERLAY - MIII 2.5" - Overlay 2.5" 32,000 sy \$9.81 \$313,900  If \$313,900  CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK \$9 \$33.06  MISCELLANEOUS ASPHALT PAVEMENT tons \$168.54  SHOULDER GUTTER- CONCRETE \$12,000 if \$19.41 \$232,920  PERFORMANCE TURF 10% Sod 41,333 sy \$0.62 \$25,626  SIGNS (Post & Misc.) \$1.14 Miles \$13,356.00 \$15,177  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6" 24,000 N.M. \$2,032.25 \$48,774  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SKIP, 6" 24,000 N.M. \$4,633.02 \$41,697  RETRO-REFLECTIVE PAVEMENT MARKERS 3,168 ea \$3.75 \$11,880  TRUSS SIGNS - None ea \$10,050.66 \$301,520  TRAFFIC SIGNALS (Model 1) None  TRAFFIC SIGNALS (Model 2) None  TRAFFIC SIGNALS (Model 2) None  Extra Items  MEDIAN CONCRETE BARRIER WALL 60.00 N.O. \$1,174,400  ITS/Tolling MEDIAN CONCRETE BARRIER WALL 51,174,400  ITS/Tolling 60.00 L.F. \$195.74 \$1,174,400  ITS/Tolling 60.00 L.F. \$195.74 \$1,174,400  ITS/Tolling 60.00 L.F. \$195.74 \$1,174,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 26,667.0 | \$y   | \$41.78      | \$1,114,147  |
| MILLING / OVERLAY         - MIII 2.5" - Overlay 2.5"         32,000         sy         \$9.81         \$313,900           CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK         sy         \$33.06         15           MISCELLANEOUS ASPHALT PAVEMENT         tons         \$168.54           SHOULDER GUTTER- CONCRETE         12,000         If         \$19.41         \$232,920           PERFORMANCE TURF         10% Sod         41,333         sy         \$0.62         \$25,626           SIGNS (Post & Misc.)         1.14         Miles         \$13,356.00         \$15,177           THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6"         24,000         N.M.         \$2,032.25         \$48,774           TRETRO-REFLECTIVE PAVEMENT MARKERS         3,168         ea         \$3.75         \$11,880           TRUSS SIGNS - None         ea         \$3,168         ea         \$3.75         \$11,880           TRUSS SIGNS - None         ea         \$3,168         ea         \$3.00,000         \$301,520           TRAFFIC SIGNALS (Model 1)         None         ea         \$1,0050.66         \$301,520           TRAFFIC SIGNALS (Model 2)         None         \$3,000.000.00         \$3,500.000.00         \$3,500.000.00         \$3,500.000.00           Extra Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 5,867.0  | tons  | \$95.15      | \$558,245    |
| If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASPHALT CONCRETE FRICTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COURSE, INC BIT, FC-5, PG 76-22, PMA      | 1,595.0  | tons  | \$132.53     | \$211,385    |
| CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK         sy         \$33.06           MISCELLANEOUS ASPHALT PAVEMENT         tons         \$168.54           SHOULDER GUTTER- CONCRETE         12,000         If         \$19.41         \$232,920           PERFORMANCE TURF         10% Sod         41,333         sy         \$0.62         \$25,626           SIGNS (Post & Misc.)         1.14         Miles         \$13,356.00         \$15,177           THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6".         24.000         N.M.         \$2,032.25         \$48,774           THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6         9.000         N.M.         \$4,633.02         \$41,697           RETRO-REFLECTIVE PAVEMENT MARKERS         3,168         ea         \$3.75         \$11,800           TRUSS SIGNS - None         ea         ea         \$3.00         \$301,520           LIGHTING         Conventional (Average Pole Spacing)         30         ea         \$10,050.66         \$301,520           TRAFFIC SIGNALS (Model 1)         None         TRAFFIC SIGNALS (Model 2)         None         \$1,174,440           TRAFFIC SIGNALS (Model 3)         None         \$33,500,000.00         \$33,500,000.00         \$33,500,000.00         \$33,500,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MILLING / OVERLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Mill 2.5" - Overlay 2.5"                | 32,000   | sy    | \$9.81       | \$313,900    |
| MISCELLANEOUS ASPHALT PAVEMENT       tons       \$168.54         SHOULDER GUTTER- CONCRETE       12,000 lf       \$19.41       \$232,920         PERFORMANCE TURF       10% Sod       41,333 sy       \$0.62       \$25,626         SIGNS (Post & Misc.)       1.14 Miles       \$13,356.00       \$15,177         THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6"       24.000 N.M.       \$2,032.25       \$48,774         THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6       9.000 N.M.       \$4,633.02       \$41,697         RETRO-REFLECTIVE PAVEMENT MARKERS       3,168 ea       \$3.75       \$11,880         TRUSS SIGNS - None       ea       \$3,168       ea       \$3.75       \$11,880         TRUSS SIGNS - None       ea       \$3,168       ea       \$3.75       \$11,880         TRAFFIC SIGNALS (Model 1)       None       ea       \$10,050.66       \$301,520         TRAFFIC SIGNALS (Model 1)       None       ***       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****       ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |          | if    |              |              |
| SHOULDER GUTTER- CONCRETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CONCRETE SIDEWALK AND DRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONCRETE SIDEWALK AND DRIVEWAYS, 4" THICK |          | sy    | \$33.06      |              |
| PERFORMANCE TURF         10% Sod         41,333 sy         \$0.62         \$25,626           SIGNS (Post & Misc.)         1.14 Miles         \$13,356.00         \$15,177           THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6".         24,000 N.M.         \$2,032.25         \$48,774           THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6         9.000 N.M.         \$4,633.02         \$41,697           RETRO-REFLECTIVE PAVEMENT MARKERS         3,168 ea         \$3.75         \$11,880           TRUSS SIGNS - None         ea         \$3.168 ea         \$3.75         \$11,880           CANTILEVER SIGNS - None         ea         \$10,050.66         \$301,520           TRAFFIC SIGNALS (Model 1)         None         \$10,050.66         \$301,520           TRAFFIC SIGNALS (Model 2)         None         \$10,050.66         \$301,520           Extra Items         6000 L.F.         \$195.74         \$1,174,440           ITS/Tolling         \$3,500,000.00         \$3,500,000.00         \$3,500,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MISCELLANEOUS ASPHALT PAVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |          | tons  | \$168.54     |              |
| SIGNS (Post & Misc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SHOULDER GUTTER- CONCRET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SHOULDER GUTTER- CONCRETE                 |          | If    | \$19.41      | \$232,920    |
| THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6". 24.000 N.M. \$2,032.25 \$48,774  THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 9.000 N.M. \$4,633.02 \$41,697  RETRO-REFLECTIVE PAVEMENT MARKERS 3,168 ea \$3.75 \$11,880  TRUSS SIGNS - None ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PERFORMANCE TURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10% Sod                                   | 41,333   | sy    | \$0.62       | \$25,626     |
| ### THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 9.000 N.M. \$4,633.02 \$41,697 RETRO-REFLECTIVE PAVEMENT MARKERS 3,168 ea \$3.75 \$11,880 TRUSS SIGNS - None ea CANTILEVER SIGNS - None ea LIGHTING Conventional (Average Pote Spacing) 30 ea \$10,050.66 \$301,520 TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None    Extra Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SIGNS (Post & Misc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 1.14     | Miles | \$13,356.00  | \$15,177     |
| RETRO-REFLECTIVE PAVEMENT MARKERS       3,168 ea       \$3.75       \$11,880         TRUSS SIGNS - None       ea         CANTILEVER SIGNS - None       ea       \$10,050.66       \$301,520         LIGHTING       Conventional (Average Pote Spacing)       30 ea       \$10,050.66       \$301,520         TRAFFIC SIGNALS (Model 1)       None         TRAFFIC SIGNALS (Model 2)       None         Extra Items         MEDIAN CONCRETE BARRIER WALL       6000 L.F.       \$195.74       \$1,174,440         ITS/Tolling       1 EA       \$3,500,000       \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, WHITE, SKIP, 6",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 24.000   | N.M.  | \$2,032.25   | \$48,774     |
| TRUSS SIGNS - None       ea         CANTILEVER SIGNS - None       ea         LIGHTING       Conventional (Average Pole Spacing)       30 ea       \$10,050.66       \$301,520         TRAFFIC SIGNALS (Model 1)       None         TRAFFIC SIGNALS (Model 2)       None         TRAFFIC SIGNALS (Model 3)       None         Extra Items         MEDIAN CONCRETE BARRIER WALL       6000 L.F.       \$195.74       \$1,174,440         ITS/Tolling       1 EA       \$3,500,000.00       \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 9.000    | N.M.  | \$4,633.02   | \$41,697     |
| CANTILEVER SIGNS - None         ea           LIGHTING         Conventional (Average Pote Spacing)         30 ea         \$10,050.66         \$301,520           TRAFFIC SIGNALS (Model 1)         None         TRAFFIC SIGNALS (Model 2)         None         TRAFFIC SIGNALS (Model 3)         None           Extra Items           MEDIAN CONCRETE BARRIER WALL ITS/Tolling         6000 L.F.         \$195.74         \$1,174,440           ITS/Tolling         1 EA         \$3,500,000.00         \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RETRO-REFLECTIVE PAVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 「MARKERS                                  | 3,168    | ea    | \$3.75       | \$11,880     |
| LIGHTING         Conventional (Average Pole Spacing)         30 ea         \$10,050.66         \$301,520           TRAFFIC SIGNALS (Model 1)         None         TRAFFIC SIGNALS (Model 2)         None         None         TRAFFIC SIGNALS (Model 3)         TRAFFIC SIGNALS (Model 3)         None         TRAFFIC SIGNALS (Model 3)         TRAFFIC SIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRUSS SIGNS - None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |          | ea    |              |              |
| TRAFFIC SIGNALS (Model 1) None TRAFFIC SIGNALS (Model 2) None TRAFFIC SIGNALS (Model 3) None  Extra Items  MEDIAN CONCRETE BARRIER WALL ITS/Tolling  1 EA \$3,500,000.00 \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CANTILEVER SIGNS - None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |          | ea    |              |              |
| TRAFFIC SIGNALS (Model 2)         None           TRAFFIC SIGNALS (Model 3)         None           Extra Items         MEDIAN CONCRETE BARRIER WALL         6000 L.F.         \$195.74         \$1,174,440           ITS/Tolling         1 EA         \$3,500,000.00         \$3,500,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LIGHTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conventional (Average Pote Spacing)       | 30       | ea    | \$10,050.66  | \$301,520    |
| TRAFFIC SIGNALS (Model 3)         None           Extra Items         6000 L.F.         \$195.74         \$1,174,440           ITS/Tolling         1 EA         \$3,500,000.00         \$3,500,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRAFFIC SIGNALS (Model 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None                                      |          |       |              |              |
| Extra Items         6000 L.F.         \$195.74         \$1,174,440           ITS/Tolling         1 EA         \$3,500,000.00         \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRAFFIC SIGNALS (Model 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None                                      |          |       |              |              |
| MEDIAN CONCRETE BARRIER WALL         6000 L.F.         \$195.74         \$1,174,440           ITS/Tolling         1 EA         \$3,500,000.00         \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRAFFIC SIGNALS (Model 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None                                      |          |       |              |              |
| ITS/Tolling 1 EA \$3,500,000.00 \$3,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Extra Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |          |       |              |              |
| C. C. Villing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MEDIAN CONCRETE BARRIER WALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |          |       | \$195.74     | \$1,174,440  |
| OVERHEAD STATIC SIGN STRUCTURE, F&I, CANTILEVER, 41-50 FT 1 EA \$61,425.50 \$61,426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !TS/Tolling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |          |       |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OVERHEAD STATIC SIGN STRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTURE, F&I, CANTILEVER, 41-50 FT          | 1        | EA    | \$61,425.50  | \$61,426     |

| STRUCTURES                |     |          |
|---------------------------|-----|----------|
| APPROACH SLAB CONCRETE    | су  | \$379.51 |
| APPROACH SLAB REINFORCING | !bs | \$1.12   |

| SUBTOTAL                     |       | \$12,632,566 |
|------------------------------|-------|--------------|
| MOT                          | 10.0% | \$1,263,257  |
| Mobilization                 | 10.0% | \$1,389,582  |
| SUBTOTAL                     |       | \$15,285,405 |
| Contingency                  | 15.0% | \$2,292,811  |
| CONSTRUCTION TOTAL (Rounded) |       | \$17,578,000 |