

City of Tampa DLWTF Expansion Project

SIX® PILOT REPORT

FINAL | February 2022



City of Tampa DLTWTF Expansion Project

SIX® PILOT REPORT

FINAL | February 2022

This item has been digitally signed and sealed by Cassandra T. Smith on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Carollo Engineers, Inc. 101 East Kennedy Boulevard, Suite 700 Tampa, FL 33602 813-888-9772

Contents

Executive Summary	ES-1
Section 1 - Introduction	1
1.1 Acknowledgments	1
1.2 Background	1
1.2.1 Piloting Ion Exchange at DLTWTF - MIEX® and SIX®	2
Section 2 - Goals and Objectives	5
2.1 Treated Water Quality Goals	5
2.1.1 Suspended Ion Exchange (SIX®)	ϵ
2.1.2 Conventional Treatment (Coagulation, Flocculation, Sedimentation)	6
2.1.3 Ozone	6
2.1.4 Filters	7
Section 3 - Pilot Plant Design	8
3.1 Process Flow	8
3.1.1 Pilot Testing Equipment	11
Section 4 - Pilot Operations and Monitoring	14
4.1 Source Water Quality	14
4.2 Full-Scale Operations Affecting the Pilot	15
4.2.1 Copper Sulfate - HR	15
4.2.2 ASR	17
4.2.3 Augmented Flow - Harney Canal	19
4.2.4 RW Versus RW at Pilot	19
4.3 Pilot Operations	21
4.3.1 Phases of Pilot Testing	21
4.3.2 SIX®	24
4.3.3 Floc/Sed	24
4.3.4 Ozone	24
4.3.5 Filters	25
Section 5 - Phase 1: SIX® Optimization (November 30, 2021-March 15, 2021)	26
5.1 Phase 1 WQ	26
5.1.1 Time Series Plots	26

5.2 Phase 1 Operations	29
Section 6 - Phase 2: Coagulation Optimization with Zeta Potential (March, 16, 2021-June 27, 2021)	31
6.1 Phase 2 WQ	31
6.1.1 Time Series Plots	32
6.2 Phase 2 Operations	34
Section 7 - Phase 3: High TOC Season (June 28, 2021-October 15, 2021)	36
7.1 Phase 3 WQ	36
7.1.1 Time Series Plots	37
Section 8 - Summary of Objectives and Results	41
8.1 Suspended Ion Exchange (SIX®)	41
8.2 Conventional Treatment (Coagulation, Flocculation, Sedimentation)	57
8.3 Ozone	66
8.4 Filters	78
Section 9 - Full-Scale EC, MIEX®, and SIX® Comparison	85
9.1 Ion Exchange	85
9.2 Coagulation	87
9.3 Ozone	87
9.4 Filters	88
9.5 Water Quality	89
9.5.1 TOC	90
9.5.2 Alkalinity	90
9.5.3 Chloride	92
Section 10 - Economic Analysis	94
10.1 Results	95
10.2 Sensitivity Analysis	98
Section 11 - Regulatory	99
11.1 SIX®	100
11.2 Filters	107
Section 12 - Conclusion	110

Appendices

Appendix A	Test Equipment	
Appendix B	Sample Processing and Methodologies	
Appendix C	Supplementary Water Quality Data and Plots	
Appendix D	Alternative Resin Testing	
Tables		
Table ES1	DLTWTF Key Finished Water Quality and Water Quality Goals (1,2)	ES-2
Table ES2	Seasonal Total Chemical Costs	ES-5
Table ES3	Full-Scale SIX® Design Specs	ES-5
Table 1	Comparison of Ion-Exchange Technologies: MIEX® vs. SIX®	4
Table 2	DLTWTF and Pilot Finished Water Quality and Water Quality Goals(1)	5
Table 3	DLTWTF HR Raw Water Quality(1)	14
Table 4	ASR Wells 1-8 WQ Summary	17
Table 5	Pilot Test Phases	21
Table 6	Summary of Baseline Operations and Conditions	22
Table 7	Overview of SIX® Pilot Operational Ranges Tested	24
Table 8	Overview of Floc/Sed Pilot Operations Tested	24
Table 9	Overview of Ozone Pilot Operations Tested	24
Table 10	Overview of Pilot Filter Media Configurations and Operations	25
Table 11	Phase 1 RW at Pilot Water Quality	26
Table 12	Phase 1 Operational Timeline	29
Table 13	Phase 1 Operations	30
Table 14	Phase 2 RW at Pilot Water Quality	31
Table 15	Phase 2 Operational Timeline	34
Table 16	Phase 2 Operations	35
Table 17	Phase 3 RW at Pilot Water Quality	36
Table 18	Phase 3 Operational Timeline	39
Table 19	Phase 3 Operations	40
Table 20	Pilot TOC and UVA Removal	41
Table 21	Average SIX® Percent Removal at Various Pilot Test Periods, SIX® Resin Doses and CT	42

Table 22	Average SIX® Removal (mg/L) at Various Pilot Test Periods, SIX® Resin Doses and CT	43
Table 23	Average SIX® Removal as Ionic Equivalence at Various Pilot Test Periods	43
Table 24	SIX Percent UV Absorbance Removal vs. Contact Time and Resin Dose. (Data from Ramboll bench testing-1/7/2020)	44
Table 25	Anions and TOC Data(1)	49
Table 26	TOC Fractionation by Process (all units mg/L)	51
Table 27	Required Chemical Dosing to Achieve Desired Finished Alkalinity (RTW findings)	57
Table 28	Pilot Solids Bench Test- Dewatering Expected Performance	61
Table 29	Tested Floc Aid Polymers	66
Table 30	Reduction in Ozone Demand at Pilot vs. Full-Scale	66
Table 31	Average and Maximum Historic Full-Scale Bromide (all units in µg/L)	69
Table 32	Chlorine Demand Summary	70
Table 33	Filter UBWV and UBV with FTW and RTW Backwash	82
Table 34	Ion Exchange Pilot Comparison: SIX® and MIEX®	85
Table 35	TBW Desal Feed and Concentrate Stream WQ	86
Table 36	Coagulation Comparison: Full-Scale, SIX®, and MIEX®	87
Table 37	Ozone Comparison: Full-Scale, SIX®, and MIEX®	88
Table 38	Filter Comparison: Full-Scale, SIX®, and MIEX®	88
Table 39	WQ Comparison: Full-Scale, SIX®, and MIEX®	89
Table 40	EPA Recommended Level of Lead Concern Relative to CSMR of Water	93
Table 41	Summary of CSMR of Finished Water	93
Table 42	Seasonal Total Chemical Costs	95
Table 43	Seasonal Differential Chemical Costs Normalized for TOC Removal	96
Table 44	Economic Analysis Summary (in millions)	97
Table 45	Economic Analysis Summary (in millions)	98
Table 46	RTW Findings for Alkalinity Control Based on Pilot Data	104
Table 47	Summary of RTW Dose Requirements for Corrosion Control	105
Table 48	General WQ of SIX® Brine Waste	106
Table 49	Additional WQ Data of SIX® Brine Waste	107
Table 50	Existing Filter Control (Pilot Filter 1) Media Configuration and LR Request	109
Table 51	New Filter Design (Pilot Filter 2) Media Configuration and LR Request	109

Figures Figure ES1 ES-2 DLTWTF SIX® Pilot Treatment Train. Raw water was prefiltered to 1/16". Full-Scale and Pilot Filter 1 and 2 Finished TOC Figure ES2 ES-3 Figure ES3 Full-Scale and SIX Pilot Average Filter UFRV Comparison ES-3 Figure 1 MIEX® Treatment Process Flow Diagram 2 Figure 2 SIX® Treatment Process Flow Diagram 3 **DLTWTF SIX® Pilot Treatment Train** 4 Figure 3 Figure 4 Detailed Schematic of SIX® Pilot Process Flow 9 Figure 5 Pilot PFD with Chemical Dosing 10 Figure 6 SIX® Pilot Unit 11 Figure 7 Pilot Floc/Sed Unit - Sside view (left) and top view (right). 12 Figure 8 Pilot Ozone Unit 13 Figure 9 Pilot Biofiltration Unit 13 Figure 10 15 Historical TOC at the Hillsborough River (HR) DLTWTF Intake Figure 11 Application Copper Sulfate Biocide to Reservoir 16 Figure 12 HR RW Sulfate - Effects of Copper Sulfate Biocide 16 Figure 13 HR RW Sulfate - Effect of Copper Sulfate Biocide + ASR 18 Figure 14 **ASR Well Sulfate** 18 19 Figure 15 DLTWTF Augmented Flow - Harney Canal SPF Return Flow - Daily Fluctuations 20 Figure 16 **DLTWTF Return Flows** Figure 17 20 Figure 18 Summary of Operational Changes from Baseline and Figure Overlay. CT = SIX contact time 23 Figure 19 Phase 1 Pilot TOC and SIX® TOC Removal Low removal point highlighted coincides with purposefully low SIX® brine concentration (25 mS/cm). 27 Figure 20 Phase 1 Pilot Alkalinity and SIX® Alkalinity Removal Low removal point highlighted coincides with purposefully low SIX® brine concentration (25 mS/cm). 27 Figure 21 Phase 1 Pilot UVA Low removal point highlighted coincides with purposefully low SIX® brine concentration (25 mS/cm). 28 Phase 1 Pilot Sulfate and SIX® Sulfate Removal Figure 22 28 Figure 23 Phase 1 Pilot Chloride and SIX® Effect on Chloride 29 Phase 1 Brine Conductivity (1x Brine Setpoint) 30 Figure 24 Phase 2 Pilot TOC and SIX® TOC Removal Figure 25 32

Figure 26	Phase 2 Pilot Alkalinity and SIX® Alkalinity Removal	32
Figure 27	Phase 2 Pilot UVA	33
Figure 28	Phase 2 Pilot Sulfate and SIX® Sulfate Removal	33
Figure 29	Phase 2 Pilot Chloride and SIX® Effect on Chloride	34
Figure 30	Phase 2 SIX Brine Conductivity (1x Brine Setpoint)	35
Figure 31	Phase 3 Pilot TOC and SIX® TOC Removal	37
Figure 32	Phase 3 Pilot Alkalinity and SIX® Alkalinity Removal	37
Figure 33	Phase 3 Pilot UVA	38
Figure 34	Phase 3 Pilot Sulfate and SIX® Sulfate Removal	38
Figure 35	Phase 3 Pilot Chloride and SIX® Effect on Chloride	39
Figure 36	Phase 3 SIX Brine Conductivity (1x Brine Setpoint)	40
Figure 37	SIX® Effluent UVA vs. TOC	43
Figure 38	SIX® UVA Removal vs RW UVA at various resin doses and CT.	46
Figure 39	UVA through the SIX® Contactor. All resin doses 20 mL/L. Triangle markers designate 23 min CT, circles designate 30 min CT, diamonds designate 42 min CT.	46
Figure 40	SIX® Apparent Color Removal	47
Figure 41	SIX® TOC Removal	48
Figure 42	Anionic Equivalence of RW at Pilot (excluding chloride)	48
Figure 43	RW Anionic Equivalence and SIX® Chloride Equivalence Adeed	50
Figure 44	Operational Changes and Effects on SIX® Anion Removal Performance	51
Figure 45	LC-OCD Results - SIX® vs. Full-Scale (sample date July 2021)	52
Figure 46	SIX® Bromide Removal	53
Figure 47	SIX® Alkalinity Removal	54
Figure 48	Pilot Alkalinity Removal (effect of sulfate)	55
Figure 49	Microflocculation Control Technique Effects on UFRV. N/A means no significant change.	55
Figure 50	SIX® and MIEX® Pilot Alkalinity Removal vs. RW TOC	56
Figure 51	Pilot Ferric Sulfate Dose. Note the testing of alternate coagulants and subsequent lower Ferric dose during those times.	57
Figure 52	Caustic Dose to Achieve Neutral pH with Various Coagulants	58
Figure 53	Conventional Treatment TOC Removal vs. Coagulation pH	59
Figure 54	Full-Scale vs. Pilot Ozone Dose and Pre-Ozone TOC	59
Figure 55	Ozone Dose vs. Pre-Ozone TOC	60

Figure 56	Floc/Sed and Ozone UVA during Cationic Polymer Test Period	62
Figure 57	Filter UFRV during Cationic Polymer Test Period	63
Figure 58	Filter 1 Headloss with and without Cationic Polymer Coagulant	63
Figure 59	Filter 2 Headloss with and without Cationic Polymer Coagulant	64
Figure 60	Filter 1 Headloss Curves with and without Floc Aid Polymer during Microflocculation	65
Figure 61	Filter 2 Headloss Curves with and without Floc Aid Polymer during Microflocculation	65
Figure 62	Literature Findings of Ozone:TOC Ratio and Hardness:TOC Ration on Particle Stability and Microflocculation Potential. Alpha values signify particle collision efficiency; higher collision efficiency means floc will be stickier and cause more filter headloss.	67
Figure 63	Filter 1 Headloss Curve during Microflocculation - Low Ozone Dose	68
Figure 64	Bromate Formation at the Pilot and Full-Scale	69
Figure 65	Historic Full-Scale Pre-Ozone Bromide (includes ASR flows)	70
Figure 66	Filter 1 Headloss Curves with and without Peroxide	71
Figure 67	Pilot and Full-Scale Filter Performance vs. TOC Removed by Filter	72
Figure 68	Pilot and Full-Scale Filter Performance vs. Ozone Dose	73
Figure 69	Filter 1 Headloss - Observed Microflocculation and Alkalinity Effects	74
Figure 70	Filter 2 Headloss - Observed Microflocculation and Alkalinity Effects	74
Figure 71	Filter 1 Headloss vs. Run Volume - Pre-Chlorine Effects during Microflocculation LR changed from 4.6 to 6.0 gpm/sq ft between the two 'pre-chlorine' runs.	75
Figure 72	Filter 2 Headloss vs. Run Volume - Pre-Chlorine Effects during Microflocculation	75
Figure 73	Filter 1 Incrememntal Headloss - Observed Microflocculation with Headloss Curves at the Top of the Media Bed F1 LR = 4.6 gpm/sq ft. Run 1: 1ppm Chlorine, Run 2: 2ppm chlorine (meeting demand).	76
Figure 74	Filter 1 Incrememntal Headloss - Minimal Microflocculation with First Run Post-Caustic Squeeze F1 LR = 6.0 gpm/sq ft.	77
Figure 75	Filter 1 Incrememntal Headloss with 4 inch Turbidity F1 LR = 2.3-8.0 gpm/sq ft.	78
Figure 76	Filter 1 UFRV vs. Filter Loading Rate	79
Figure 77	Filter 1 Turbidity vs. Run Volume at Various Loading Rates (LR gpm/sq ft).	79
Figure 78	Filter 2 Headloss vs. Run Volume at Various Loading Rates (LR gpm/sq ft).	80

Figure 79	Filter 2 Turbidity vs. Run Volume at Various Loading Rates (LR gpm/sq ft).	80
Figure 80	Filter 1 Headloss at pH 7 vs. pH 8	81
Figure 81	Filter CBHL with FTW and RTW	82
Figure 82	RW Geosmin and MIB	83
Figure 83	SIX® Pre-Filter and Finished T&O	84
Figure 84	Full-Scale, SIX®, and MIEX® Pilot Filter UFRV Comparison	89
Figure 85	Finished TOC - SIX®, MIEX®, Full-Scale	90
Figure 86	Finished Alkalinity - SIX®, MIEX®, Full-Scale	91
Figure 87	Finished Chloride - SIX®, MIEX®, Full-Scale	92
Figure 88	Alternative 1B Capital Cost Assumption from Chapter 5 of 2018 Master Plan	96
Figure 89	SIX® Capital Cost Assumptions from Master Plan Update	97
Figure 90	Finished TOC - Full-Scale and SIX® Pilot Filters 1 and 2	100
Figure 91	Pilot TOC and SIX® TOC Removal	101
Figure 92	Full-Scale Chemical Dosing	102
Figure 93	SIX® Pilot Chemical Dosing	103
Figure 94	Full-Scale and SIX® Ozone Dose and Pre-Ozone TOC	105
Figure 95	Filter 1 UFRV Performance vs. Loading Rate	108
Figure 96	Filter 2 UFRV Performance vs. Loading Rate	109

Abbreviations

ANSI American National Standards Institute

ASR aquifer storage and recovery

Carollo Carollo Engineers, Inc.

CBHL Clean bed headloss

cf cubic feet

cfs cubic feet per second

city City of Tampa

DLTWTF David L. Tippin Water Treatment Facility

DS distribution system

EC enhanced coagulation

ES effective size F Fahrenheit

ft feet

FRV full resin volume FRV Fresh resin vessel

gpcd gallons per capita per day

HR Hillsborough River
MDD maximum day demand
MIEX® magnetic ion exchange
μg/L micrograms per liter

MG million gallons

mgd million gallons per day mg/L milligrams per liter

MP master plan

MRI Meurer Research, Inc.

msl mean sea level

NSF National Science Foundation

PS pump station

psi pounds per square inch

RO reverse osmosis

RW raw water

SCADA supervisory control and data acquisition

SIX® suspended ion exchange
SPF solids processing facility
TOC total organic carbon
TWT Tippin Water Team

WQ water quality

WTP water treatment plant

ZP zeta potential

EXECUTIVE SUMMARY

Through master planning efforts and a robust capital improvement program (CIP), a facility expansion project was developed to address the needs and challenges at the David L. Tippin Water Treatment Facility (DLTWTF) in Tampa, FL. The CIP was updated in January 2021 by the Tippin Water Team (TWT). The Tippin Water Team includes a joint venture of Garney Construction and Wharton-Smith, Inc. with Carollo Engineers, Inc. (Carollo) leading a team of consultants including Ramboll and others.

Existing plant challenges highlighted in the Master Plan (MP) include high chemical use and cost (DLTWTF is currently an enhanced coagulation plant); low coagulation pH and corresponding corrosion issues; use of aggressive chemicals; high ozone doses (which combined with high bromide requires bromate mitigation); low filter loading rates and low unit filter run volumes (UFRVs); a limited backwash water handling system; and high solids production which is compounded by poor dewaterability of the solids. Additional information on existing plant challenges can be found in Section 1.2 of this report.

Ion exchange (IX) was determined to be a promising technology to best address DLTWTF goals, predominantly a finished water total organic carbon (TOC) below 2.0 mg/L. Magnetic Ion Exchange (MIEX®) was piloted in 2017/2018 and matched current TOC removal while lowering downstream chemical usage. However, critical risks were identified with MIEX®: single-source proprietary resin, continual resin replacement, and potential for resin fouling. In addition, the MIEX® process could not achieve the City's finished water TOC goals of less than 2 mg/L. Suspended Ion Exchange (SIX®), is an alternative ion exchange technology designed to overcome these risks.

SIX® is a continuous IX process that utilizes a generic strong base anion (SBA) exchange resin with multiple potential manufacturers. Lamella plates are used to separate the resin and avoid washout efficiently. A significant feature of the SIX® process is its regeneration frequency; SIX® operates like a plug flow reactor where 100 percent of the SIX® resin inventory gets regenerated after each pass through the reactor. This regeneration frequency keeps the resin's ion exchange sites lightly loaded, minimizing the potential for fouling. Additional information on the MIEX® and SIX® process can be found in Section 1.2.1 of this report. For these reasons, SIX® was piloted (November 30, 2020-October 15, 2021) as a pretreatment process to the overall treatment train. This report details the findings of the SIX® pilot at DLTWTF.

The SIX® pilot, like the MIEX® pilot, incorporated the entire treatment train at DLTWTF to understand the effects on downstream processes during seasonal RW WQ variability. The pilot configuration is shown below in Figure ES1. Additional details can be found in Section 3 of this report.

Figure ES1 DLTWTF SIX® Pilot Treatment Train. Raw water was prefiltered to 1/16".

Pilot objectives for this study are dictated by full-scale operational needs and water quality goals. Key water quality goals are highlighted in Table ES1 below. Additional information on the water quality goals can be found in Section 2 of this report.

Table ES1 DLTWTF Key Finished Water Quality and Water Quality Goals (1,2)

Parameter	Goal	DLTWTF Finished (max/min/avg)	Pilot Finished (max/min/avg)
TOC (mg/L)	$<$ 2.0 mg/L 95% of the time $^{(3)}$	4.3/1.1/2.6	2.1 / 0.5 / 1.5
T&O (Geosmin, ng/L)	<3.0	2.4/1/1.6	1.2/<1/<1
T&O (MIB, ng/L)	<3.0	<1/<1/<1	<1/<1/<1

Notes:

- (1) All data summarized from pilot test period 11/30/20-10/15/21.
- (2) Data does not include test periods with alternative operations (e.g., ACH or cationic polymer coagulant).
- (3) Suggested by City as part of the master plan meeting held on 9/10/2020.

The SIX® pilot successfully achieved the WQ goals (Table ES1). TOC (Figure ES2), color, Taste and Odor (T&O), and pH goals were regularly met. Due to the alkalinity removal by the SIX® process, the alkalinity goal was not consistently met, especially during high TOC season when raw water (RW) alkalinity drops, but this can be adjusted full-scale by chemical addition. This report estimates the chemical usage required to achieve the alkalinity goal (46 mg/L as CaCO₃). Disinfection was not tested at the pilot-scale, but instead at the bench-scale with pilot samples. Bench-scale testing followed the current DLTWTF protocol, and disinfection by-products (DBPs) were maintained well below maximum contaminant levels (MCLs). Based on lower finished water TOC at the pilot, finished water from a full-scale SIX® treatment train is expected to be the same or better than current operations in maintaining residual chloramine concentrations and minimizing DBP formation.

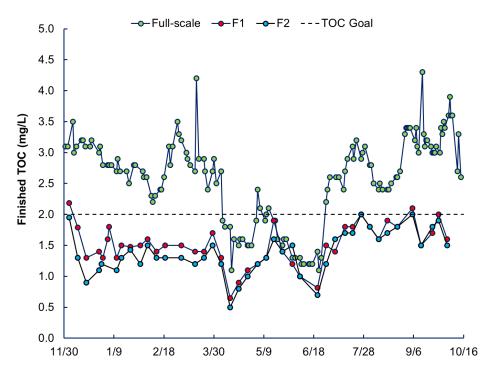


Figure ES2 Full-Scale and Pilot Filter 1 and 2 Finished TOC

In addition to meeting the major WQ goals, other achievements were realized via the SIX® pilot train, specifically with the filter performance. Neutral zeta potential (ZP) was targeted to determine coagulant demand; it was with neutral ZP that filter performance excelled. Pilot filters were operated at loading rates (LRs) up to 6-8 gpm/sq ft with unit filter run volumes (UFRVS) up to 20,000-45,000 gal/sq ft, respectively; full-scale filters are operated at 2-2.4 gpm/sq ft with UFRVs around 5,000 gal/sq ft (Figure ES3). More filter configuration information is provided in Section 4.3.5 of this report. Additional information on filter performance can be found in Section 8 of this report.

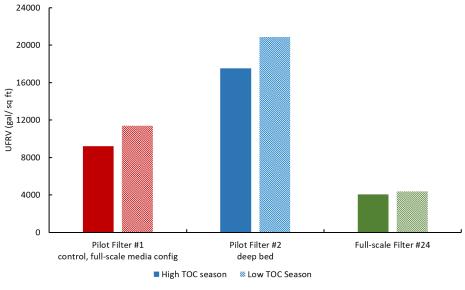


Figure ES3 Full-Scale and SIX Pilot Average Filter UFRV Comparison

In addition to enhanced filter performance/production and improved water quality, the SIX® pilot also reduced chemical consumption downstream.

- Coagulant (ferric sulfate) usage was reduced on average by 59 percent and 71 percent for low and high RW TOC season, respectively. (See Objective 8 results)
- With the SIX® alkalinity removal, pH depression for coagulation was achieved with lower coagulant doses and eliminated the need for sulfuric acid (currently utilized most of the year at full-scale). (See Objective 9 results)
- With lower pre-ozone TOC, the ozone dose was also reduced by 41 percent and 32 percent for low and high RW TOC season, respectively. (See Objective 13 results)

With any IX technology, salt will be required as an input for resin regeneration. The SIX® pilot salt usage was determined to be 1545 lb/MG treated and this is used throughout the analysis. It is expected that full-scale operations can further optimize and reduce this usage. Additional bench-scale testing may assist with further optimization for full-scale design. (See Section 9 of this report for more details). It should be noted that the use of the Tampa Bay Seawater Desal Concentrate for the salt supply for the SIX® process was tested and is a potentially viable solution. This option is discussed in the Economic Analysis (Section 10) of this report.

With the incorporation of any new technology, there are identified risks. Risks associated directly with SIX® include the following:

- Resin fouling.
- Resin attrition.
- Raw water particulate material causing problems.

Resin fouling was not observed at the pilot-scale throughout the 10.5-month test period, but it is important to note that chloraminated process water was utilized for resin rinsing during the regeneration process (Objective 4 results). A caustic squeeze chemical cleaning of the resin was tested at the pilot-scale. This high pH (~12) brine soak resulted in improved initial performance and would be a common technique to assist in fouling mitigation (Objective 19). SIX® resin attrition is minimal (compared to other IX technologies); the economic analysis conservatively estimates \$200,000 annually which is 4.4 percent of the resin inventory. Operational issues were met at the pilot with clogging of the SIX® eductor by RW particles; this issue was resolved at the pilot-scale with prefiltration at 1/16-inch, and this size screening is being evaluated for the full-scale intake design. In addition to risks associated directly with SIX®, additional water quality risks have been identified as:

- Higher chlorides, lower sulfate, lower alkalinity and coagulation pH could require additional efforts to abate downstream corrosion and manage stability of the product water.
- Microflocculation was observed during high TOC season which affected filter headloss (some mitigation measures were identified).

With SIX® salt use, higher chlorides result in the finished water. Chloride-to-sulfate mass ration (CSMR) is much higher (with higher chlorides in conjunction with lower sulfate); however, due to the lack of lead in the distribution system, this is not a concern (See CSMR 9.5.3.1). Alkalinity is expected to be added back into the process via CO_2 and caustic. Estimates of chemical usage to achieve CCPP 0-13 mg/L and finished water pH 8-8.5 are described under Objective 7 results. Microflocculation was observed during the pilot to have adverse effects on headloss

accumulation rates in the filters; microflocculation control strategies are also described within this report, specifically Objective 20 results.

An economic analysis was performed to evaluate the SIX® process compared to current full-scale operations. Both high TOC (RW>15 mg/L) and low TOC (RW<15 mg/L) seasons were assessed separately, as the RW WQ shifts significantly seasonally. Seasonal costs are shown in Table ES2. The most significant contributing factors for SIX® cost are (1) salt usage and (2) the use of caustic for alkalinity recovery post coagulation. Salt and caustic in the SIX® pilot constitute \$205/MG of the \$263/MG, respectively in the high TOC season and \$113/MG of the \$153/MG in the low TOC season. Non-cost benefits of alkalinity reduction (e.g., improved TOC removal with lower chemical usage during coagulation), along with other non-economic benefits of SIX®, such as improved water quality (e.g., lower finished water TOC, lower DBPs), higher filter UFRVs, and fewer new filters to meet future capacity are also essential factors to consider when evaluating the merits of SIX®. With higher filter UFRVs with the SIX® pilot, it is estimated that future full-scale filters with SIX® will operate at higher LRs providing more redundancy and reliability compared to current operations (as well as with MIEX®). Refer to Section 10 of this report for more information.

Table ES2 Seasonal Total Chemical Costs

Operation ⁽¹⁾	Units	High TOC Season ⁽²⁾	Low TOC Season ⁽³⁾
Existing, Full-Scale	\$/MG	\$222	\$271
SIX® Pilot	\$/MG	\$263	\$153
Differential		+\$41	-\$118
% Difference		18.5% increase	43.5% decrease

Notes:

- (1) During pilot operations from November 30, 2020 October 15, 2021.
- (2) High TOC season occurred from June 28, 2021 October 15, 2021.
- (3) Low TOC occurred from December 15, 2020 June 28, 2021.

With the findings from this pilot testing in combination with other full-scale successes, the TWT recommends the implementation of SIX® full-scale at DLTWTF. The full-scale SIX® design will be designed based on the preliminary specifications described in Table ES3.

Table ES3 Full-Scale SIX® Design Specs

Based on 20 min CT, 30mL/L dose.

Component	Detail		
Contactor Size	20 min		
Number of Trains	10		
Train Size	14 mgd		
Resin Dose	20-30 mL/L		
Resin Type ⁽¹⁾	LanXess Lewatit S5128		
Resin Inventory ⁽²⁾	\$4.5 mil		
Salt Use	1545 lb/MG		
Notes:			
(1) Resin used during pilot testing.			

Section 1

INTRODUCTION

1.1 Acknowledgments

It is essential to acknowledge the work, commitment, and endless hours many of the City's staff, TWT, and equipment suppliers put forth for this effort. The success of this study would not have been possible without the City's dedication to the pilot's operations in particular, the Tippin lab team for accommodating the extensive water quality testing; the Tippin purchasing and receiving team for efficiently ordering pilot chemicals and delivering pilot packages to the operator; Tippin operations team for supplying ferric sulfate and effectively communicating relevant full-scale operations; Tippin maintenance staff for, at times, going above and beyond to assist with pilot maintenance; Tippin management for supporting of the SIX® pilot so strongly, and ensuring its success. The effective teamwork of TWT also played a large role in the accomplishments of the pilot; in particular, Wharton-Smith for meticulous mobilization and demobilization of the pilot; Garney for their support in regular (and non-regular) maintenance throughout testing; and Ramboll for the SIX® expertise.

1.2 Background

The City of Tampa's (City) Water Department owns and operates the David L. Tippin Water Treatment Facility (DLTWTF) located in Tampa, Florida. In 2020, the plant produced about an average of 76.7 million gallons a day (mgd) of potable water for its service, which has a population of 717,000 and 205,466 service locations. Carollo Engineers, Inc. (Carollo) prepared a comprehensive master plan (MP) that was finalized in July 2018 and included a prioritized capital improvement program (CIP) that, among 16 other projects, included a facility expansion project. The CIP was updated in January 2021 as a part of the master plan update completed by the Tippin Water Team (TWT). The Tippin Water Team includes Garney Construction, Wharton-Smith, Inc.

Findings from the MP efforts highlight existing plant challenges. These challenges include high chemical cost and use; low coagulation pH and corresponding corrosion issues; use of dangerous chemicals; high ozone doses (which combined with high bromide requires bromate mitigation); low filter loading rates and low unit filter run volumes (UFRVs); limited backwash waste washwater handling system; and high solids production and poor dewaterability.

Given the DLTWTF's existing challenges, need for expansion, and extensive chemical use and solids generation, a detailed alternatives analysis was completed as a part of the master planning efforts. (The DLTWTF Master Plan Report and other documents referenced for this document are listed in the References section). The high chemical usage, aggressive water quality in specific unit processes, and solids production are largely due to the enhanced coagulation treatment method currently used at the plant (which includes both high doses of coagulant and acid addition at certain times of the year). Five alternatives were evaluated to optimize or replace the plant's current enhanced coagulation (EC) treatment approach and corresponding solids-handling processes while still achieving or improving the City's goals for total organic carbon (TOC) removal and all other finished water quality goals.

1.2.1 Piloting Ion Exchange at DLTWTF - MIEX® and SIX®

As a result of the alternatives analysis from the original master plan, two treatment train alternatives were selected for piloting to confirm feasibility. The magnetic ion exchange (MIEX®) process (Figure 1), which was piloted approximately 50 percent of time from October 2017 to April 2018, was found to match current TOC removal and lower chemical demands for downstream EC. However, due to critical risks identified as a result of the pilot study along with Carollo's previous full-scale MIEX® experience, full-scale implementation was deferred.

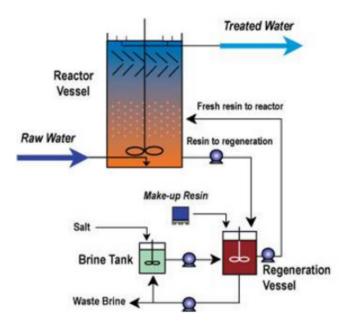


Figure 1 MIEX® Treatment Process Flow Diagram

Instead, a longer-term pilot study was suggested for an alternative ion exchange technology, called suspended ion exchange (SIX®). A white paper was prepared that detailed what was known about the SIX® process (its use in the United States is limited) and was included as an appendix to the Master Plan Report. Figure 2 presents an overview of the SIX® process.

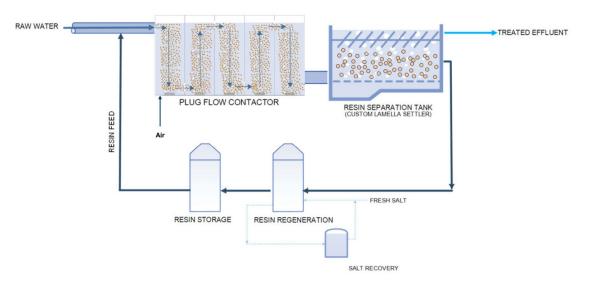


Figure 2 SIX® Treatment Process Flow Diagram

Based on preliminary bench studies, the SIX® process was expected to produce similar or enhanced TOC removal compared to MIEX® while addressing other risks detailed in the MIEX® Pilot Report. Table 1 highlights the major differences between the MIEX® and SIX® processes. Like MIEX®, SIX® will be used as pretreatment to a coagulation, flocculation, sedimentation, ozone, filtration process.

SIX® has the following anticipated advantages over MIEX®:

- Limited resin attrition (based on previous experience).
- Ability to use commercially available gellular, strong base anionic resins.
- Lightly loaded resin (in terms of anions exchanging with sites) reduces the potential for resin fouling and reduces interferences from other anions (carbonates and sulfates).
- Resin approach promotes the enhanced removal of organics.
- Complete resin inventory regeneration for each pass reduces microbial fouling.

Table 1 Comparison of Ion-Exchange Technologies: MIEX® vs. SIX®

Parameter	MIEX®	SIX®
TOC Loading on the Resin	Heavy	Light
Resin Inventory Replacement	Continuous	7-10 years ⁽¹⁾
Resin Characteristics	Proprietary (one supplier)	Non-proprietary ⁽²⁾
Brine Concentration (saturation)	100%	2-10.8%
Resin Regeneration per Cycle (percent of inventory)	10%	100%
Biogrowth Potential	High ⁽³⁾	Low to Medium
SO ₄ ²⁻ and HCO ₃ ⁻ Competition	Medium	Low

Notes

- (1) The Andijk WTP in the Netherlands has been operating with minimal resin replacement since 2014.
- (2) Only one supplier has been used in existing full-scale installations.
- (3) During MIEX® pilot, chlorine was required to mitigate biofouling.

At the end of the master planning effort, the potential for the SIX® was discussed with the City. It was decided that these advantages warranted piloting the SIX® process to understand better its effects on the overall treatment and downstream processes. Due to the anticipated impacts of the SIX® process on downstream processes, coagulation, flocculation, sedimentation, ozone, and biofiltration were also piloted. Figure 3 shows a simplified version of the pilot-scale process train. This document details the pilot results.

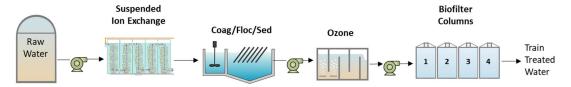


Figure 3 DLTWTF SIX® Pilot Treatment Train

Section 2

GOALS AND OBJECTIVES

Pilot objectives for this study are dictated by full-scale operational needs, as determined by the original MP. In general, the SIX® process is being investigated for improved organics removal, and downstream processes are included to mimic the existing, full-scale plant and observe SIX®'s subsequent downstream effects. The purpose of the pilot is to confirm the bench results and demonstrate dynamic systems that cannot be tested at the bench scale (i.e., filter operations).

2.1 Treated Water Quality Goals

This pilot was run for 10.5 months (November 30, 2020-October 15, 2021). It was crucial to run the pilot for this duration to capture the seasonal variation in the source water at DLTWTF. Table 2 summarizes the DLTWTF's finished water quality and water quality goals, as described in the master plan CIP or updated by the City.

Table 2 DLTWTF and Pilot Finished Water Quality and Water Quality Goals⁽¹⁾

Parameter	DLTWTF Finished (max/min/avg)	Goal ⁽⁵⁾	Pilot Finished (max/min/avg)
Alkalinity (mg/L as CaCO₃)	109 / 45 / 82.5	46 ⁽²⁾	98 / 10 / 37
рН	8.13 / 7.6 / 7.88	7.8 - 8.0	7.6 / 6.4 / 6.9 ⁽³⁾
Turbidity (NTU)	0.2 / 0.05 / 0.09	<0.08	ND
TOC (mg/L)	4.3/1.1/2.6	<2.0 mg/L 95% of the time ⁽⁴⁾	2.6 / 0.5 / 1.5
Color (apparent, CU)	<5/<5/<5	Unapparent (<5)	8 / <5 / <5
T&O (Geosmin, ng/L)	2.4/1/1.6	<3.0	1.2/<1/<1
T&O (MIB, ng/L)	<1/<1/<1	<3.0	<1/<1/<1
Free Ammonia (mg/L)	ND ⁽⁶⁾	0.1- 0.18	ND
Fluoride (mg/L)	0.75 / 0.6 / 0.65	0.65-0.75	ND
Chlorine Residual (mg/L) ⁽⁴⁾	5.4 / 3.5 / 4.4	4.25-4.75	NA

Notes:

- (1) Data summarized from pilot test period 11/30/20-10/15/21.
- (2) Suggested minimum by RTW; Historic minimum for DLTWTF = 46mg/L.
- (3) pH on the pilot was adjusted to 7 throughout the piloting. It is anticipated that final pH adjust to a CCPP of 0-13 mg/L as CaCO₃ would occur after filtration.
- (4) Suggested by City as part of the master plan meeting held on 9/10/2020.
- (5) Chlorine residual goals were not met during piloting, 3 rounds of chlorine demand testing were done at bench-scale.
- (6) ND no data, was not tested.

Specific pilot objectives are broken down by each pilot skid, respectively.

2.1.1 Suspended Ion Exchange (SIX®)

- 1. Assess and determine the optimum resin dose, contact time, and corresponding required contactor size.
- 2. Understand the implications of contactor size on brine use and waste stream volume.
- 3. Demonstrate the TOC and color removal during different seasons and the impact of other anions on TOC removal.
- 4. Understand the long-term fouling characteristics of the suspended ion exchange resin (limited to 10.5-month study period).
- 5. Understand potential biological fouling's impact on settleability (resin).
- 6. Understand the removal of bromide from the SIX® process.
- 7. Understand the removal of bicarbonate from the SIX® process.

2.1.2 Conventional Treatment (Coagulation, Flocculation, Sedimentation)

- 1. Understand the impact of the SIX® process on the charge demand of the raw water seasonally.
- 2. Establish the impact of pH adjustment versus metal salt coagulants on additional TOC removal and ozone demand.
- 3. Establish the impact of pH adjustment versus metal salt coagulants on the settleability and dewaterability of solids residual.
- 4. Determine the potential for using or supplementing with a cationic polymer and the impacts on TOC, ozone demand, settleability, and dewaterability of solids residual.
- 5. Determine the best floc aid polymer for the different coagulation schemes.
- 6. Evaluate potential impacts of conventional floc/sed versus ballasted flocculation.

2.1.3 Ozone

- 1. Determine the overall ozone demand and dose with ion exchange and coagulation/ flocculation/ sedimentation.
- 2. Determine the approach to contact time based on the demand curves for each of the ion exchange and coagulation approaches.
- 3. Determine the potential for bromate formation and associated mitigation measures based on the overall ozone demand and the selected pretreatment approaches. (This analysis shall include the impact of the ASR well if the City is running the well during piloting).
- 4. Determine the chlorine demand when ozone is not operational or if ozone is being used for oxidation only and the approach to CT.
- 5. Determine the impacts of the different pretreatment methods on the potential for sidestream injection (in terms of getting CT with one application point).
- 6. Determine the impacts and approach to quenching (hydrogen peroxide only).
- 7. Impact of ozone dose and pretreatment on TOC removal through biological filtration.
- 8. Understand the implications of intermediate-ozone on microflocculation and filter headloss. (new objective)

2.1.4 Filters

- 1. Evaluate different filter loading rates and media configurations (sizes and depth) based on pretreatment approaches.
- 2. Evaluate the combined use of hydrogen peroxide and phosphorus addition (if needed) in combination with pH adjustment to improve filter loading rates.
- 3. Evaluate the impacts of improved backwash protocol, different media configurations, and potential filter design changes (additional headloss).
- 4. Perform analysis of biological growth with different pretreatment (ability to handle T&O, TOC removal).

Section 3

PILOT PLANT DESIGN

3.1 Process Flow

Figure 4 shows a detailed schematic of the pilot system process flow. Raw water from the Actiflo® pipe was pumped to SIX®'s influent water tank (located in front of Building 9). Water was then pumped from the influent tank through the SIX® process, whose effluent flows by gravity to a conventional flocculation/sedimentation pilot unit where coagulation chemicals were added. The initial doses were determined from bench-scale demand testing; subsequently, a zeta meter was used to assess pilot coagulant demand to achieve a neutral charge (this is further discussed during Phase 2). Additional bench testing was conducted during the pilot to screen options and evaluate optimal coagulant type for the SIX® effluent.

The clarified water was then pumped to the ozone skid. The ozone dose was initially determined by bench testing. Subsequently, doses were automatically adjusted to meet the demand necessary to achieve 0.5 mg/L residual at 5.5 min contact time to best match full-scale. The ozonated water was pumped to each filter by its filter influent pump located on the biofiltration skid, where four different filter configurations were tested.

The first filter media configuration will mimic full-scale, as-is operations, while the second and third configurations reflect potential new full-scale filter designs based on the hydraulic availability once the current clearwell project is complete. Finally, the fourth configuration is an alternative configuration for the existing full-scale filters to maximize existing filter box dimensions, potentially raising filter troughs to improve loading rates or UFRVs. During the pilot, filter loading rates were periodically changed (mostly raised) to understand a large range of performance.

A detailed PFD with initial starting conditions and chemical dosing is outlined in Figure 5. All chemicals used in the pilot study conform to the American National Standards Institute/National Sanitation Foundation (ANSI/NSF) Standard 60.

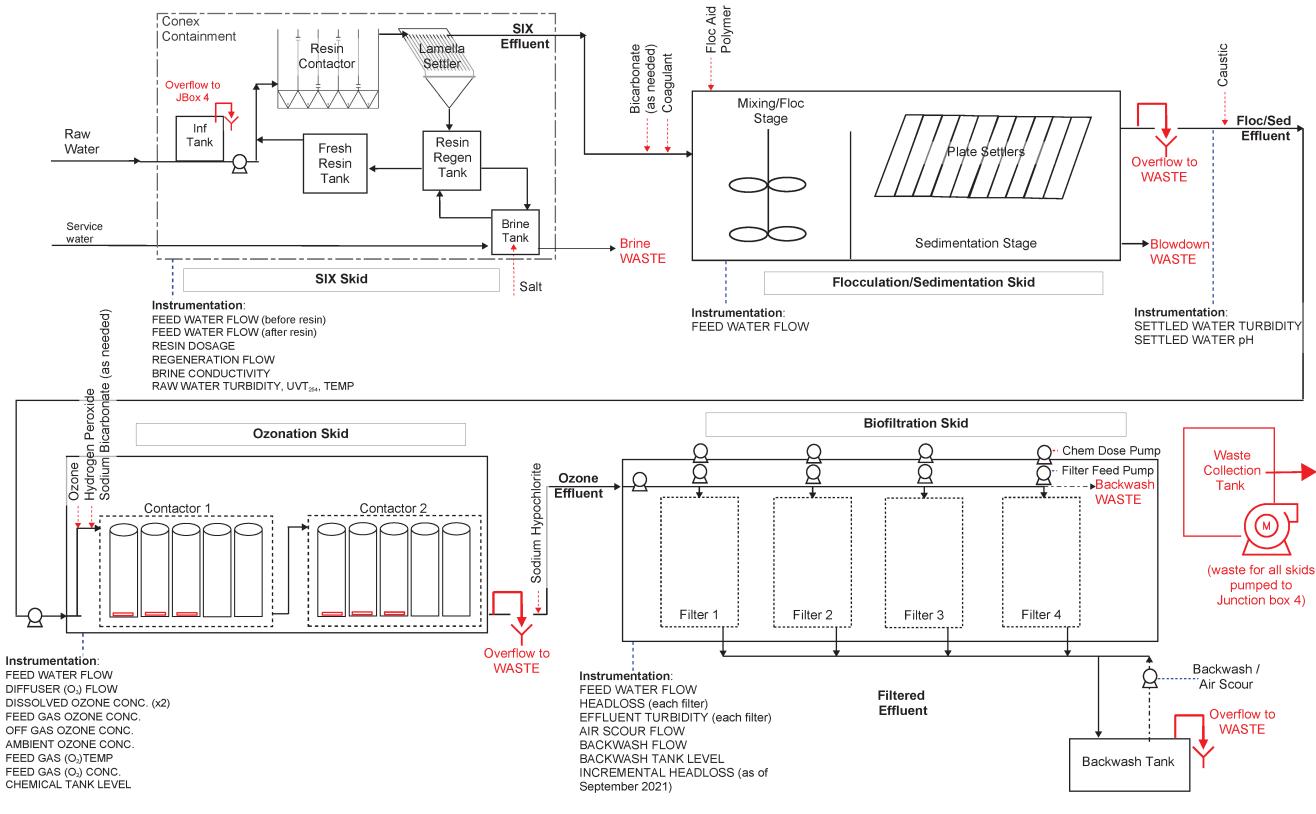


Figure 4 Detailed Schematic of SIX® Pilot Process Flow

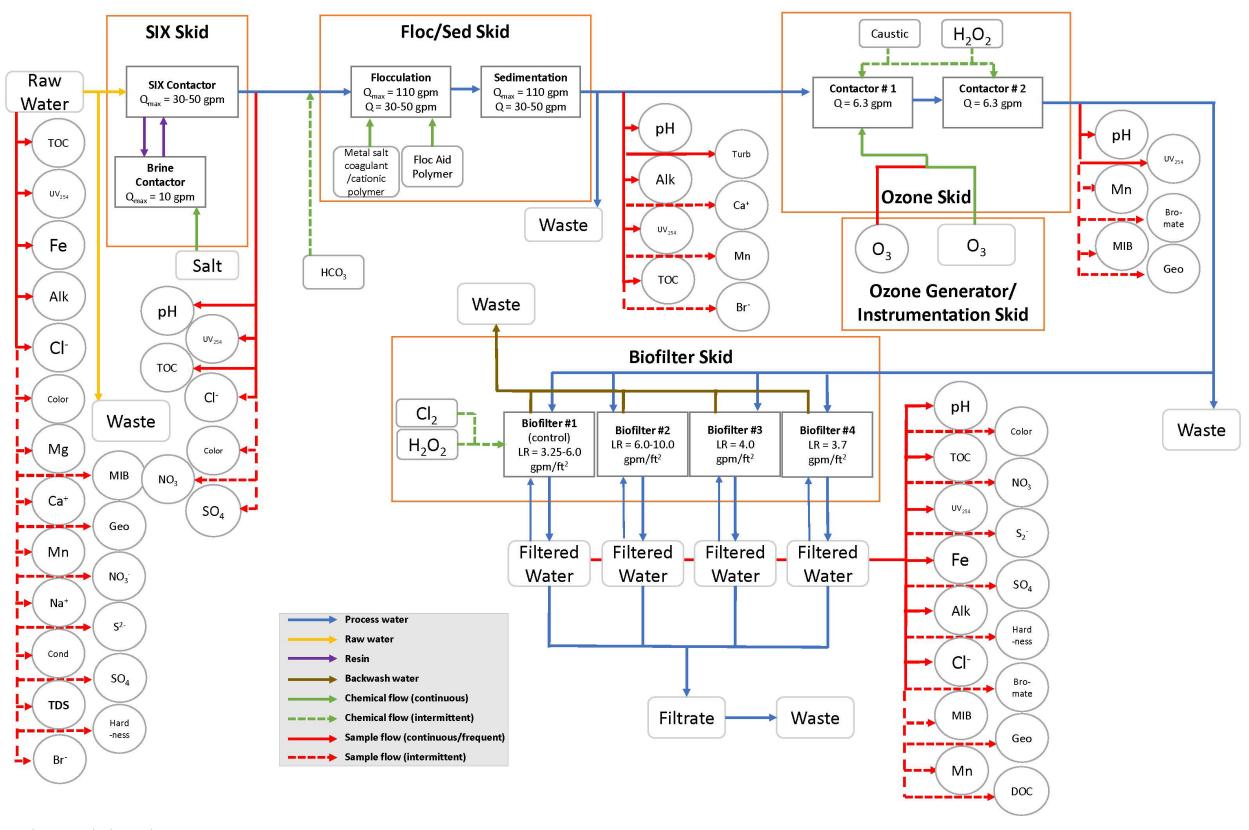


Figure 5 Pilot PFD with Chemical Dosing

3.1.1 Pilot Testing Equipment

The following section introduces specifications for the major process testing equipment. Appendix A offers additional details for each skid.

3.1.1.1 SIX® Ion Exchange

The SIX® pilot unit, provided by Ramboll Inc., is designed to perform as a plug flow reactor. The resin is dosed into the raw water flow just before it flows through the contactor, where it is kept in suspension utilizing air fluidization. Since the resin and raw water flow together, both have the same hydraulic retention, or residence time, allowing for a more uniform distribution of resin and fully utilize the resin functional group sites for the exchange process.

After the contactor, the resin is continuously separated from the flow stream by gravity settling using a lamella plate settler. After it is collected, the resin is regenerated in a batch process with a dilute salt brine solution (NaCl) in the regeneration tank and transferred to the resin storage tank, where it is continuously returned to the beginning of the contactor. Figure 6 provides a 3D rendering of this unit.

Figure 6 SIX® Pilot Unit

The SIX® pilot unit consists of the following parts:

- Raw water influent tank and pump.
- Raw water flow meter.
- Resin contactor.
- Lamella settler.
- Resin regeneration system.
- Brine hold tanks.

3.1.1.2 MRI Floc/Sed

A demonstration-scale flocculation and sedimentation treatment pilot unit was provided by Meurer Research, Inc. (MRI). The floc/sed unit was used to simulate the full-scale DLTWTF conventional floc/sed process. This unit employs settling plates for solids removal. While the plates for the DLTWTF may be larger than those in the MRI pilot unit, plate efficiency and performance generally improve with size. Therefore, the pilot results are expected to be conservative relative to full-scale. Additional details of the MRI Plate Settler Pilot Unit (floc/sed) are provided in Figure 7. provides a visual of this unit.

Figure 7 Pilot Floc/Sed Unit - Sside view (left) and top view (right).

3.1.1.3 Ozone

A demonstration-scale ozonation pilot unit was provided by Carollo and manufactured by Intuitech, Inc. Figure 8 provides a 3D rendering of this ozone unit. This ozone unit consists of the following parts:

- Influent water feed pumps (two).
- Two contactors with five contact chambers each.
- An ozone generator with oxygen concentration and ozone destruct unit.
- Additional chemical metering pumps, as needed.

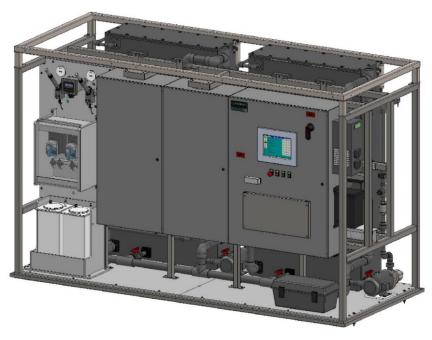


Figure 8 Pilot Ozone Unit

3.1.1.4 Biofiltration

A demonstration-scale biofiltration pilot unit was provided by Carollo and manufactured by Intuitech, Inc. Figure 9 provides a 3D rendering of this unit. This biofiltration skid consists of the following parts:

- Four constant-rate filters with individual feed pumps.
- Five chemical feed pumps, as needed.
- An air scour and backwash system.

Figure 9 Pilot Biofiltration Unit

Section 4

PILOT OPERATIONS AND MONITORING

4.1 Source Water Quality

The DLTWTF's primary water source is the Hillsborough River (HR), followed by its secondary source, the Tampa Bypass Canal Middle Pool. The DLTWTF also uses an aquifer storage and recovery (ASR) system of wells that store treated water in an aquifer during wet seasons when river flows are high and recovers that water for use when river flows are low and other supplies are limited. Table 3 summarizes the DLTWTF's raw water quality data. Note that the Hillsborough River's high seasonal variability makes it challenging to maintain high-quality effluent under the wide range of influent water quality conditions throughout the year. It should be noted that this water quality does not include recycle streams or ASR contributions.

DLTWTF HR Raw Water Quality(1) Table 3

N Data	Raw		
(#)	Max	Min	Avg
222	155	47	119
221	8.4	6.8	7.5
222	5.73	0.69	1.88
142	28.3	3.5	13.5
222	325	35	119
59	99.3	<1	8.5
33	8.1	<1	3.6
40	0.49	0.033	0.2
42	0.018	0.004	0.01
221	180	56	115
48	84.4	33.6	58.3
222	30.9	11.6	23.8
	(#) 222 221 222 142 222 59 33 40 42 221 48	(#) Max 222 155 221 8.4 222 5.73 142 28.3 222 325 59 99.3 33 8.1 40 0.49 42 0.018 221 180 48 84.4	(#) Max Min 222 155 47 221 8.4 6.8 222 5.73 0.69 142 28.3 3.5 222 325 35 59 99.3 <1

(1) Data summarized from pilot test period 11/30/20-10/15/21.

Figure 10 shows the TOC variability of the HR over the past decade, emphasizing the importance of capturing the range of raw water TOC. RW TOC captured during this pilot is bolded in red for reference.

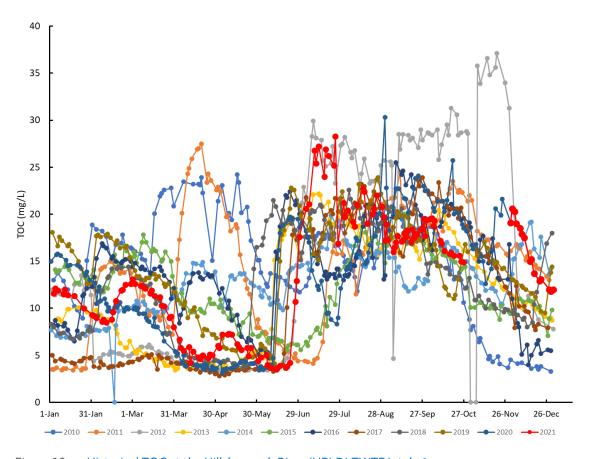


Figure 10 Historical TOC at the Hillsborough River (HR) DLTWTF Intake¹

4.2 Full-Scale Operations Affecting the Pilot

4.2.1 Copper Sulfate - HR

Copper sulfate has historically been used by COT staff as a T&O control strategy. The biocide is sprayed onto the water's surface via boat near the intake to control algal growth seasonally and subsequent T&O compounds. The biocide is typically deployed in the spring when algal blooms are most common in the HR. Figure 11 shows the amount of copper sulfate applied and the duration. This strategy works very well to control T&O in the river but contributes significant amounts of sulfate to the RW. During pilot testing, copper sulfate was routinely sprayed from April 5, 2021-June 1, 2021.

¹ The pilot RW is shown bolded in red, which includes the start of the pilot (11/30/2020-12/31/2020).

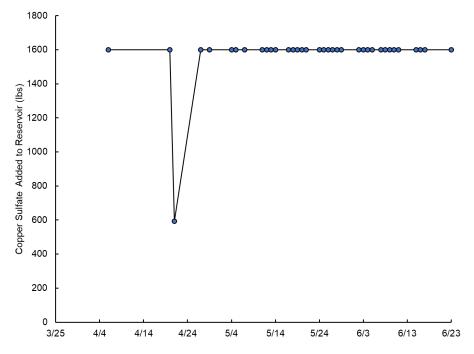


Figure 11 Application Copper Sulfate Biocide to Reservoir

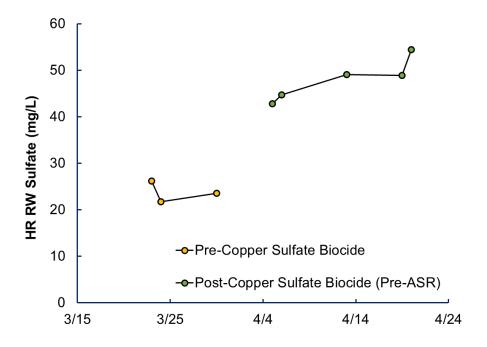


Figure 12 HR RW Sulfate - Effects of Copper Sulfate Biocide

4.2.2 ASR

Flow from the Rome Ave wells were recovered during the pilot operations to test the system with this water source present. The wells are generally recovered annually to help meet demands during periods of low river flow (spring). All eight ASR wells were pumped from April 23, 2021-June 1, 2021; and then again, August 10, 2021-August 25, 2021, only wells 2-4 were recovered from. A summary of ASR water quality is provided in Table 4. Of note, this water is relatively high in TDS, chloride, and sulfate - which affect anion equivalence of the RW and subsequently ion exchanges processes with SIX®. Figure 13 shows the effect of ASR on HR RW sulfate; it is important to note that ASR flows overlapped with additional augmented flow from the Harney Canal, which could account for the initial drop in sulfate. ASR sulfate remained relatively stable while recovering (Figure 14).

Table 4 ASR Wells 1-8 WQ Summary

		N data	Max	Min	Avg
Arsenic	μg/L	21	25.1	1.0	7.3
Chloride	mg/L	46	458.1	27.9	234
Dissolved Oxygen (field)	mg/L	46	2.69	0.02	0.35
Oxidation Reduction Potential (field)	mV	46	231	-230	-7.5
pH (Field)		46	7.6	7.1	7.3
Specific Conductivity (field)	mmhos/cm	46	2140	627	1320
Sulfate	mg/L	46	185	94	140
Temperature (field)	Degree C	46	26.8	21.2	24.1
Solids, Total Dissolved TDS	mg/L	9	1041	615	831
Turbidity	NTU	21	3.7	0.077	0.57
Iron Total	mg/L	9	0.35	0.07	0.21
Fluoride	mg/L	46	0.6	0.24	0.45
Gross Alpha	pCi/L	8	9.4+/-0.7 T	1.3+/-0.5 T	
TTHM	μg/L	8	23.87	< 0.45	4.34

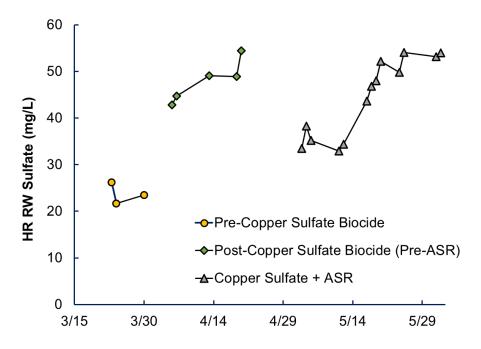


Figure 13 HR RW Sulfate - Effect of Copper Sulfate Biocide + ASR

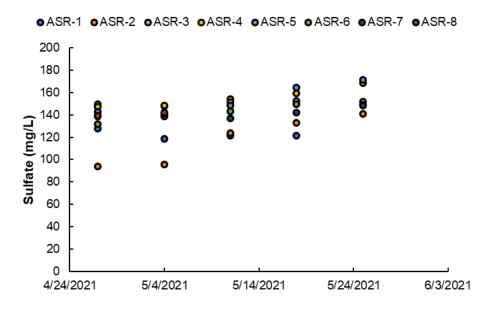


Figure 14 ASR Well Sulfate

4.2.3 Augmented Flow - Harney Canal

As previously mentioned, DLTWTF augments influent flow from one of its secondary source waters, the Harney Canal, as needed to meet demands. Typically, this is during the spring - early summer when river flows are lowest. This year, flow was augmented with this flow March 24, 2021-June 22, 2021. Figure 15 provides an overview of relative flow during that period.

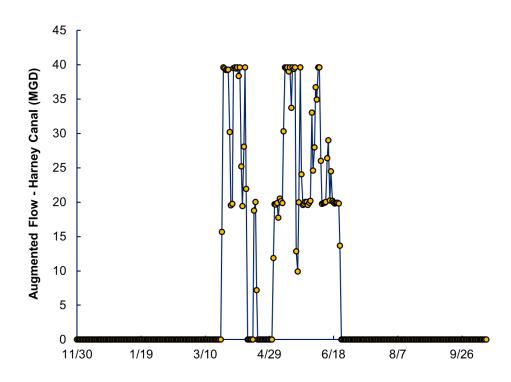


Figure 15 DLTWTF Augmented Flow - Harney Canal

4.2.4 RW Versus RW at Pilot

The DLTWTF is a zero-liquid discharge plant, and with that, does not discharge any liquid waste streams to sewer. All liquid waste streams generated at the plant are returned to the intake and retreated. Return flows include gravity thickener overflow, stormwater from the Solids Processing Facility (SPF) lagoons and the site, filtrate from the SPF belt presses, and the Rome Ave ASRs. Reported RW water quality is referring to that of the Hillsborough River. During piloting, a 'RW at the pilot' sampling location was incorporated to capture the changes in RW WQ due to these return flows. When operating, flows from the SPF are relatively stable throughout the year and vary hourly with peak flows occurring 7 am-3 pm (Figure 16). ASR flows vary seasonally and are dictated by the City's ability to recharge and recover flow from the various wells (relative impact of on return flows through Reclaim Pipes 1 and 2 shown in Figure 17). These streams vary in WQ and were noted to affect pilot performance.

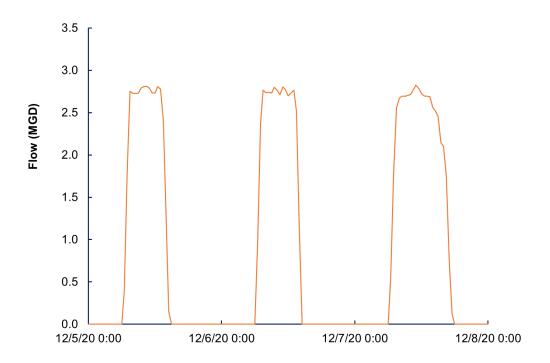


Figure 16 SPF Return Flow - Daily Fluctuations

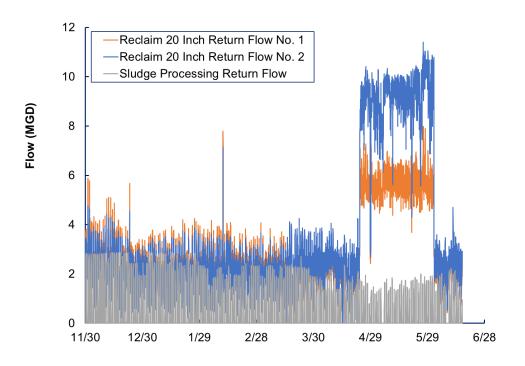


Figure 17 DLTWTF Return Flows

4.3 Pilot Operations

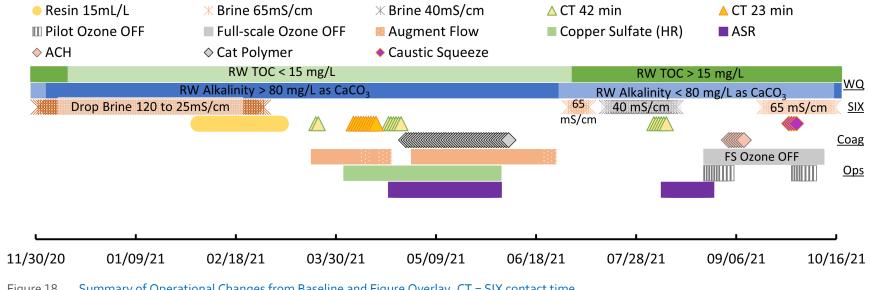
Due to the variability of the HR WQ, this pilot was operated in an adaptable manner to accommodate these changes. For this report, baseline operations were established based on the operations the majority of the time. With that, many operational changes were made from baseline to fully test the pilot (e.g., ASR turned on to assess bromide removal and impacts on bromate formation) and to understand the optimal operating ranges to achieve the best performance under these varying conditions. For ease of analysis, this testing has been broken down into three phases, and operational changes made are outlined for each.

4.3.1 Phases of Pilot Testing

To best analyze and report the results of this pilot testing, the pilot report is broken down into three distinct phases: SIX® optimization, Coagulation Optimization with Zeta Potential (ZP), and High TOC Season. A summary of these three phases and the associated testing period is provided in Table 5.

Table 5 Pilot Test Phases

Phase	Description	Start	End
Phase 1	SIX® Optimization	11/30/2021	3/15/2021
Phase 2	Coagulation Optimization with Zeta	3/16/2021	6/27/2021
Phase 3	High TOC Season	6/28/2021	10/16/2021
Low TOC	<15 mg/L	11/30/2021	6/27/2021
High TOC	>15 mg/L	6/28/2021	10/16/2021


4.3.1.1 Baseline Operations and Figure Overlays

Baseline conditions are those operating conditions that occur the majority of the time. Changes from these baseline conditions are highlighted in this report and the data. Figure 18 highlights significant operational changes throughout the pilot. Various versions of this figure are used as an overlay for other figures in this report where appropriate to understand better how these changes affected pilot data.

Table 6 Summary of Baseline Operations and Conditions

Process	Value		
	Flow	30.8	gpm
SIX®	Resin	20	mL/L
2IV.	Brine Range	40	mS/cm
	Brille Ralige	55	mS/cm
Floc Sed	Coagulant	ferric sulfate	-
Pilot Ozone	ON, Dose	1.0-4.15	mg/L
Filter 1	LR	4.6	gpm/sq ft
Filter 2	LR	8	gpm/sq ft
Filter 3	LR	4.6	gpm/sq ft
Filler 5	Media	31	inches of GAC
Filter 4	LR	3.7	gpm/sq ft
	Augment Flow	0	-
COT Ops	Ozone	ON	-
	ASR	OFF	-
Microfloc Control	Nor	ne	-
	Hi TOC	15	mg/L and above
WQ	Low TOC	15	mg/L and below
WU	Good Alk	80	mg/L and above
	Low Alk	80	mg/L of below

Summary of Operational Changes from Baseline and Figure Overlay. CT = SIX contact time Figure 18

4.3.2 SIX®

This pilot testing intended to assess a range of operations to understand SIX® performance at various RW WQ. Initial SIX® bench-testing of the Tippin RW established starting points for SIX® operations. The SIX® process has historically utilized an anionic exchange resin, Lewatit S5128 (Lanxess Engineering Chemistry, Germany). This is a strong base, acrylic resin gel. The gellular resin allows for faster regeneration and reduced salt concentrations than traditional microporous resins due to the adsorptive kinetics. A bench-scale study was performed to assess the potential for alternative resins. The results from that study are summarized in Appendix D of this report. At the pilot scale, the same resin was used throughout. A summary of operational changes made to the SIX® pilot is provided in Table 7.

Table 7 Overview of SIX® Pilot Operational Ranges Tested

Parameter	Value
Brine Concentration	18-123 mS/cm (10,400-81,200 mg/L TDS)
Resin Concentration	15 & 20 mL/L
Contact Time	23 min, 30 min, 42 min

4.3.3 Floc/Sed

This pilot testing intended to assess a range of operations to understand SIX® downstream effects. Initial bench-testing of the SIX® effluent established starting points for coagulation chemistry. A summary of operational changes made to the coagulation chemistry tested is provided in Table 8.

Table 8 Overview of Floc/Sed Pilot Operations Tested

Chemical	Туре
Coagulants	Ferric sulfate, ACH, cationic polymer
	Cationic: Polydyne Clarifloc C-308P
Floc Aid Polymer	Anionic: Hydrex 3511 (low charge)
	Hydrex 3521 (mid charge)

4.3.4 Ozone

The ozone unit was operated to match full-scale residual goals. The pilot ozone generator was automatically adjusted to maintain a residual of 0.5 mg/L at this 5.5 min CT sample location. The unit utilized ambient ait and an oxygene concentrator at the start of the pilot; the system was converted to pure oxygen the week of January 18th to improve reliability. A summary of ozone operations is provided in Table 9.

Table 9 Overview of Ozone Pilot Operations Tested

Parameter	Value	
Ozone Flowrate	6.24 gpm	
Detention Time to First Sample	5.5 min	
Residual at First Sample Point	0.5 mg/L	

4.3.5 Filters

The four filter configurations tested were designed and operated to provide a wide range of operational data to use for full-scale now and in the future. An overview of the filter configurations tested is provided in Table 10. New filters will be built as part of MP; various new configurations were tested as part of the new filter design work. Filter 1 was designed and operated to mimic current-full-scale filters. Pilot filter operations and media were adjusted, as needed, to determine effects on headloss over time and optimize performance with the various media configurations. This report details results from Filter 1 & 2; additional data for Filters 3 & 4 can be found in Appendix C.

4.3.5.1 Filter Media

Virgin GAC media was used for Filters 2-4. The GAC for these filters was added while the pilot was being commissioned. RW was plumbed directly to the filters for one week in an attempt to exhaust the adsorptive capacity prior to the start of the pilot. A summary of this exhaustion can be found in Appendix A.

Table 10 Overview of Pilot Filter Media Configurations and Operations

	Filter 1 "Existing Filter Control"	Filter 2 "New Filter"	Filter 3 "New Filter, Match L/D, Low Headloss"	Filter 4 "Modified Existing Filter, Less Headloss"
GAC depth (in)	22	63	40	34
Sand depth (in)	12	9	12	9
ES, GAC (mm)	1.05 (F830) ⁽¹⁾	1.40 (F816)	1.40 (F816)	1.1 (F820)
ES, sand (mm)	0.5	0.6	0.6	0.5
L/D	1075	1495	1234	1242
Loading rate (gpm/sq ft)	3.25-6.0	6.0-10.0	4.0	3.7
EBCT, GAC (min)	4.3-2.33	2.33-1.4	6.23	5.73
Allowable Headloss (ft)	6	12	12	6

Note:

4.3.5.2 Filter 1 Control

For the control filter, Filter 1, sand and GAC were pulled directly from full-scale Filter 24. This allows for a better comparison of the pilot to the full-scale, which is critical considering the challenges associated with headloss and filter loading rate. A representative sample of media was collected by City staff and provided to the TWT to be loaded into the filter. Due to the age of the control media, sieve analysis of this media was performed at the end of the piloting and can be found in Appendix A. Full-scale Filter 24 data was collected throughout the pilot and is herein presented as a representative for comparison to full-scale filter performance.

⁽¹⁾ Full-scale GAC was originally F830 media. Sieve analysis of this GAC at the end of the pilot resulted in D_{10} ES 1.05 mm.

Section 5

PHASE 1: SIX® OPTIMIZATION (NOVEMBER 30, 2021-MARCH 15, 2021)

5.1 Phase 1 WQ

A summary of pilot RW WQ is provided in Table 11. For seasonal RW WQ, this phase began at the very end of the high TOC season, with TOC quickly falling into the median range (10-15 mg/L) and staying there. Generally speaking, this RW was the easiest to treat relative to the other testing phases, achieving high filter UFRVs and meeting the TOC goal <2 mg/L consistently.

Phase 1 RW at Pilot Water Quality⁽¹⁾ Table 11

N Data		Raw	
(#)	Max	Min	Avg
71	136	79	121
71	7.91	7.2	7.5
47	20.6	8.5	11
69	150	50	77
11	4.2	<1.0	2.5
11	1	<1.0	0.1
15	0.234	0.1	0.1
10	0.057	<0.001	<0.001
68	140	84	125
15	74.3	58	66
	(#) 71 71 47 69 11 11 15 10 68	(#) Max 71 136 71 7.91 47 20.6 69 150 11 4.2 11 1 15 0.234 10 0.057 68 140	(#) Max Min 71 136 79 71 7.91 7.2 47 20.6 8.5 69 150 50 11 4.2 <1.0

(1) Data summarized from pilot Phase 1 11/30/21-3/15/21.

5.1.1 Time Series Plots

Figure 19 through Figure 23 provide overviews of key WQ parameters during Phase 1 of testing. Phase 1 included start-up periods for each of the pilot processes. After all of the processes were started up and stable, the optimization of SIX® began with lowering brine concentration in order to determine the best range for operations and where the low limit occurs where performance declines. This low brine point is highlighted on relevant Phase 1 WQ graphs.

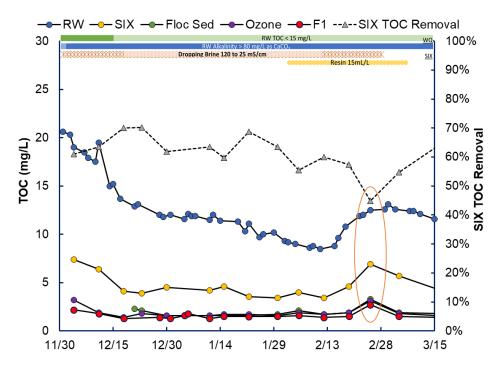


Figure 19 Phase 1 Pilot TOC and SIX® TOC Removal Low removal point highlighted coincides with purposefully low SIX® brine concentration (25 mS/cm).

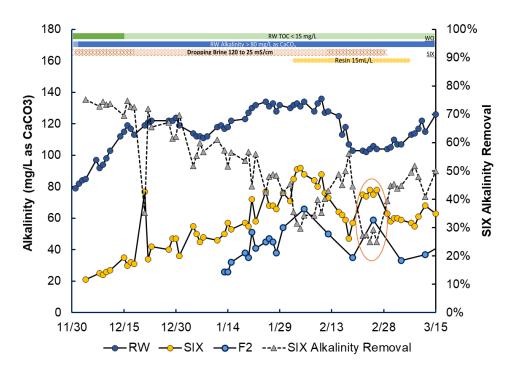


Figure 20 Phase 1 Pilot Alkalinity and SIX® Alkalinity Removal Low removal point highlighted coincides with purposefully low SIX® brine concentration (25 mS/cm).

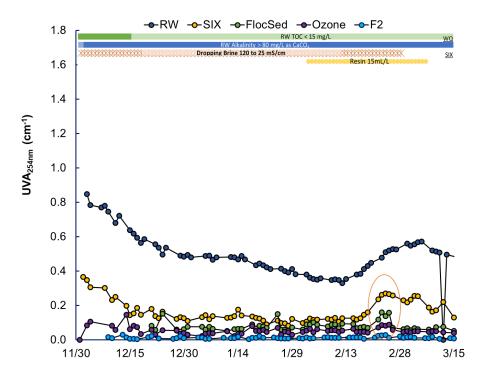


Figure 21 Phase 1 Pilot UVA
Low removal point highlighted coincides with purposefully low SIX® brine concentration (25 mS/cm).

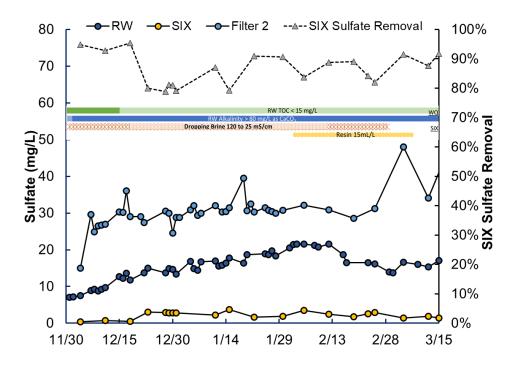


Figure 22 Phase 1 Pilot Sulfate and SIX® Sulfate Removal

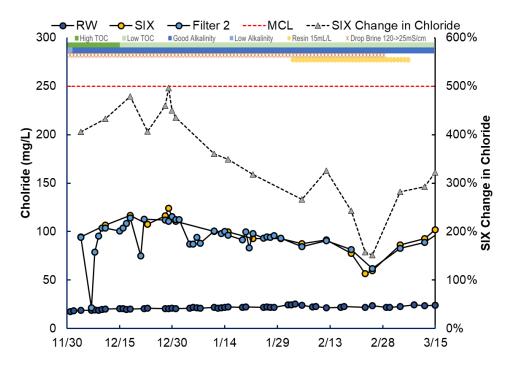


Figure 23 Phase 1 Pilot Chloride and SIX® Effect on Chloride

5.2 Phase 1 Operations

Table 12 Phase 1 Operational Timeline

Process	Element	Date	Details
SIX®	Brine	11/30-2/20	Gradually dropped brine concentration
2IV@	Resin	2/2-3/8	15mL/L dose
FlocSed	рН	1/12	Control Floc Sed effluent to pH 7 with caustic trim
Filter 1	LR	11/30/20 12/10/20 3/9/21	5.2 gpm/sq ft 3.3 gpm/sq ft 4.6 gpm/sq ft
Filter 2	LR	11/30/20	6 gpm/sq ft
Filter 3	LR	11/30/20	4 gpm/sq ft
Filter 4	LR	11/30/20	3.6 gpm/sq ft

Table 13 Phase 1 Operations

Parameter Parameter		Range	
	Resin Dose	15 & 20	mL/L
SIX	СТ	30	min
	Brine Concentration	135-18	mS/cm
	Ferric sulfate Dose	16.5-63.3	mg/L
Coagulation	Floc aid polymer Dose	0.12-0.58	mg/L
	Caustic Dose	2.7-22.3	mg/L
Ozone	Dose	1.1-2.7	mg/L
Filter 1	LR	3.3-5.3	gpm/sq ft
riitei 1	UFRV	6763-19610	gal/sq ft
Filter 2	LR	6.0	gpm/sq ft
Filler 2	UFRV	9728-35910	gal/sq ft
Filter 3	LR	4.2	gpm/sq ft
	UFRV	7608-23610	gal/sq ft
Filter 4	LR	4.0	gpm/sq ft
riitei 4	UFRV	7270-18459	gal/sq ft

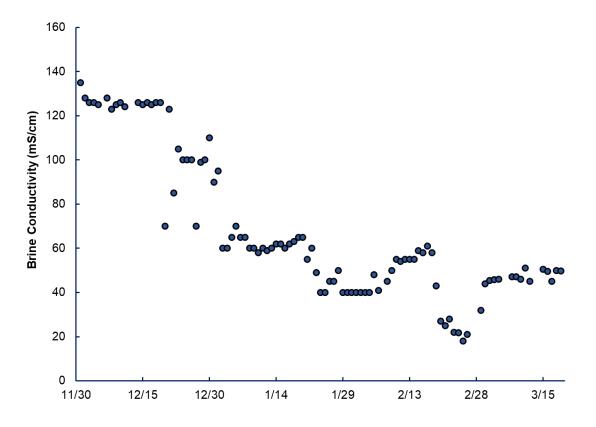


Figure 24 Phase 1 Brine Conductivity (1x Brine Setpoint)

Section 6

PHASE 2: COAGULATION OPTIMIZATION WITH ZETA POTENTIAL (MARCH, 16, 2021-JUNE 27, 2021)

6.1 Phase 2 WQ

This phase of the pilot testing was focused on coagulation optimization. Neutral ZP was found to be a practical test for coagulant demand based on filter performance during Phase 1 of testing. In March, the zeta meter was lent by Carollo for onsite rapid zeta testing. Table 14 summarizes RW WQ during this period of testing.

Phase 2 RW at Pilot Water Quality(1) Table 14

Davameter	N Data		Raw	
Parameter	(#)	Max	Min	Avg
Alkalinity (mg/L as CaCO ₃)	68	155	113	139
рН	68	8.38	7.4	8.1
TOC (mg/L)	36	11.9	3.5	6.4
Color (apparent, PCU)	65	80	35	55
Turbidity (NTU)	73	5.73	1.0	2.85
T&O (Geosmin, ng/L)	58	99.3	<1.0	8.9
T&O (MIB, ng/L)	58	11.6	<1.0	2.2
Iron (total, mg/L)	15	0.096	0.007	0.072
Manganese (dissolved)	13	0.082	0.001	0.035
Calcium Hardness (mg/L as CaCO ₃)	62	180	126	162
Bromide (μg/L)	15	147	58	88.4
Notes:				

(1) Data summarized from pilot Phase 2 3/16/21-6/27/21.

6.1.1 Time Series Plots

The figures below provide an overview of key WQ trends during Phase 2 of testing.

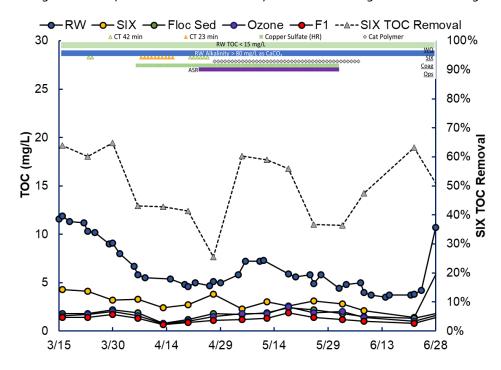


Figure 25 Phase 2 Pilot TOC and SIX® TOC Removal

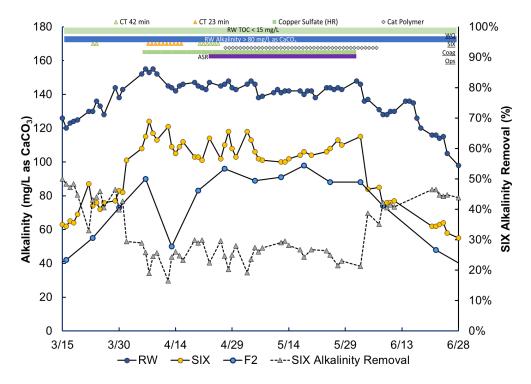


Figure 26 Phase 2 Pilot Alkalinity and SIX® Alkalinity Removal

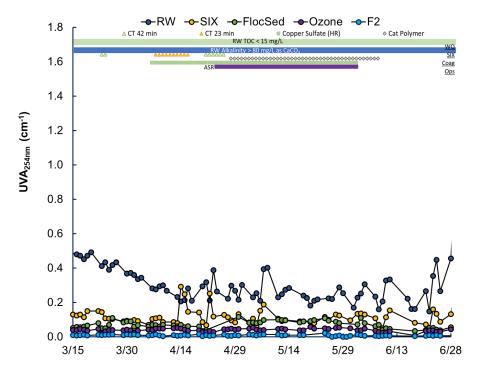


Figure 27 Phase 2 Pilot UVA

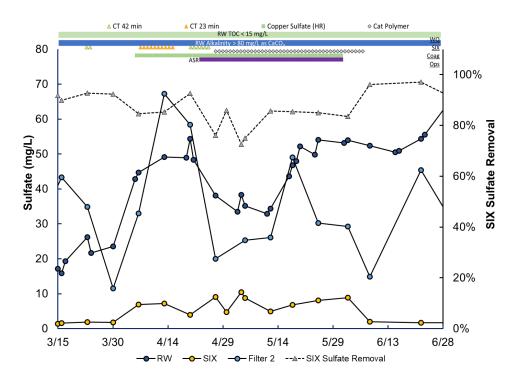


Figure 28 Phase 2 Pilot Sulfate and SIX® Sulfate Removal

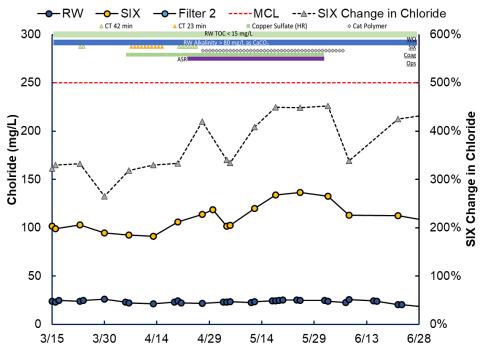


Figure 29 Phase 2 Pilot Chloride and SIX® Effect on Chloride

6.2 Phase 2 Operations

Table 15 Phase 2 Operational Timeline

Parameter		Date	Change	
COLOrs	T&O control	4/5-6/1	Copper sulfate biocide to HR	
COT Ops	ASR	4/23-6/1	Recovering Rome Ave Wells 1-8	
SIX®	Flow ⁽¹⁾	4/6-16	23 min CT (39.6 gpm)	
SIX®	FIOW` /	4/19-23	42 min CT (22 gpm)	
Consulation	ZP Online	3/18	Neutral ZP for Coagulant demand	
Coagulation	Cationic polymer with ferric sulfate	4/26-6/7	Testing new coagulant	
Filter 2	LR	3/31	8 gpm/ sq ft	
Files 2	LR	3/29	4.6 gpm/sq ft	
Filter 3	Media	3/29	removed 9" of GAC	
Notes: (1) SIX® CT 30 min during all other times (30 gpm).				

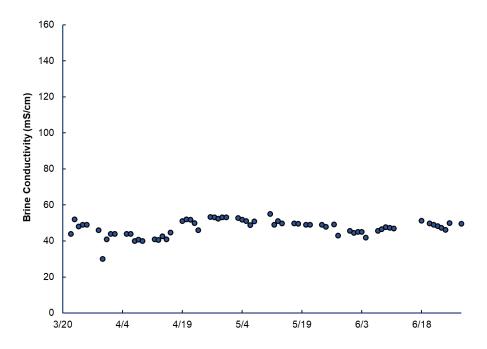


Figure 30 Phase 2 SIX Brine Conductivity (1x Brine Setpoint)

Table 16 Phase 2 Operations

Process	Parameter	R	ange
SIX	Resin Dose	20	mL/L
	CT	23, 30, 42	min
	Brine Concentration	30-55	mS/cm
Coagulation	Ferric sulfate Dose	5.3-91.0	mg/L
	Floc aid polymer Dose	0.0-0.63	mg/L
	Cationic polymer Dose(1)	1.36-3.8	mg/L
	Caustic Dose	0.3-44.1	mg/L
Ozone	Dose	1.0-3.6	mg/L
Filter 1	LR	4.6	gpm/sq ft
	UFRV	4567-20826	gal/sq ft
Filter 2	LR	6.0-8.0	gpm/sq ft
	UFRV	7940-38500	gal/sq ft
Filter 3	LR	4.6	gpm/sq ft
	UFRV	6412-22813	gal/sq ft
Filter 4	LR	4.0	gpm/sq ft
	UFRV	3940-16989	gal/sq ft

Notes:

 $(1) \qquad \hbox{Cationic polymer dosed along with 15-20 mg/L ferric sulfate and 0.1-0.2 mg/L floc aid polymer}$

Section 7

PHASE 3: HIGH TOC SEASON (JUNE 28, 2021-OCTOBER 15, 2021)

This phase of the pilot testing was focused on high TOC season (>15 mg/L), which was combined with low hardness/alkalinity (<80 mg/L as $CaCO_3$). These two combinations yielded low UFRV due to headloss. Table 17 summarizes RW WQ during this period of testing.

At the end of the pilot, a chemical cleaning of the resin was tested. The caustic squeeze consisted of a robust, high pH regeneration cycle. Resin was soaked in pH 12 brine (50 g/L NaCl + 2% (w/v) NaOH) solution for ~24 hours, thoroughly rinsed, and returned to process. This cleaning took place September 27, 2021-September 30, 2021; effects were observed until the end of the pilot October 15, 2021.

7.1 Phase 3 WQ

Table 17 Phase 3 RW at Pilot Water Quality⁽¹⁾

Parameter	N Data		Raw	
Parameter	(#)	Max	Min	Avg
Alkalinity (mg/L as CaCO ₃)	15	79	46	62
рН	14	7.13	6.86	7
TOC (mg/L)	16	28.7	16.6	21.2
Color (apparent, PCU)	15	500	200	279
T&O (Geosmin, ng/L)	5	<1	<1	<1
T&O (MIB, ng/L)	5	<1	<1	<1
Iron (total, mg/L)	16	0.494	0.124	0.39
Manganese (dissolved)	12	0.14	0.04	0.085
Calcium Hardness (mg/L as CaCO₃)	70	146	56	69.9
Bromide (μg/L)	16	91.7	33.9	54.8

Notes:

(1) Data summarized from pilot Phase 3 6/28/21-10/15/21.

7.1.1 Time Series Plots

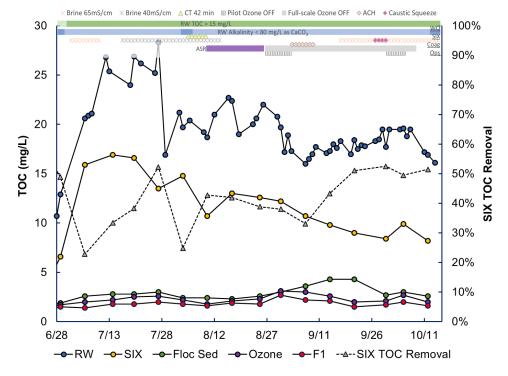


Figure 31 Phase 3 Pilot TOC and SIX® TOC Removal

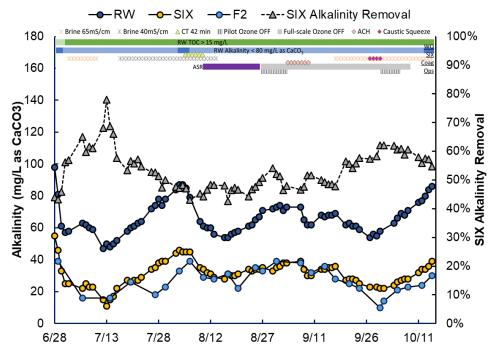


Figure 32 Phase 3 Pilot Alkalinity and SIX® Alkalinity Removal

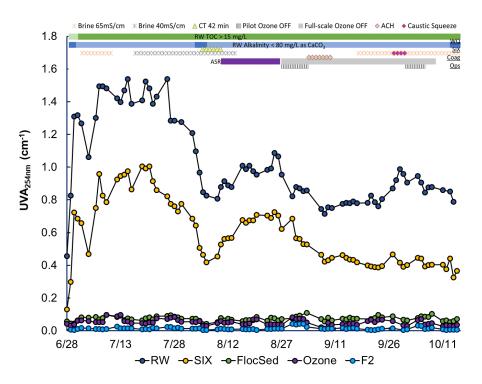


Figure 33 Phase 3 Pilot UVA

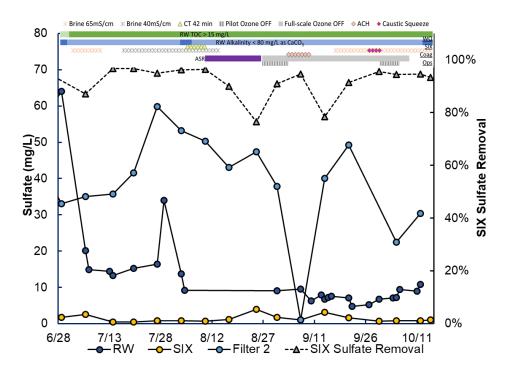


Figure 34 Phase 3 Pilot Sulfate and SIX® Sulfate Removal

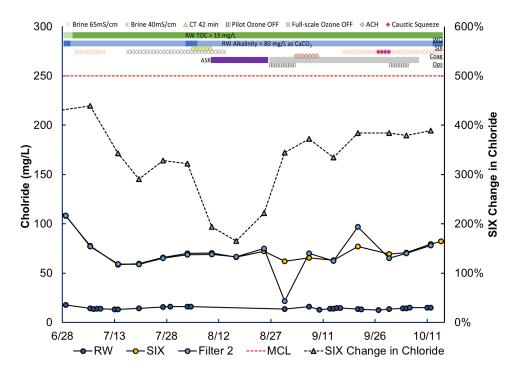


Figure 35 Phase 3 Pilot Chloride and SIX® Effect on Chloride

Table 18 Phase 3 Operational Timeline

Parameter		Date	Change
COT Ops	ASR	8/10-8/25/21	Rome Ave Wells 2-4
	Ozone OFF	8/27-10/8/21	LOX shortage
SIX®	Flow ⁽¹⁾	8/4-8/9	42 min CT (22 gpm)
217.0	Caustic Squeeze	9/27-10/1/21	Resin cleaning
	ACH	9/3-9/9	New coagulant
Coagulation	Anionic (mid charge)	9/16-9/17	Now EA polymor
	Anionic (low charge)	9/17-9/20	New FA polymer
Filter 1	LR	9/21/21 9/22/21 9/25/21 10/13/21 10/15/21	2.3 gpm/sq ft 4.6 gpm/sq ft 6 gpm/sq ft 2.3 gpm/sq ft 8 gpm/sq ft (bump test)
Filter 2	LR	10/14/21	10 gpm/sq ft
Filter 4	LR	9/21-22/21 9/22/21 9/25/21 10/13/21	6 gpm/sq ft 3.6 gpm/sq ft 2.2 gpm/sq ft 8 gpm/sq ft (bump test)
	Alkalinity	7/15-9/4	Dosed sodium bicarbonate
Microfloc Control	Peroxide	9/9-9/12	Ozone quench
	Chlorine	9/22-end	Pre-filter

Notes:

(1) SIX® CT 30 min during all other times (30 gpm).

Table 19 Phase 3 Operations

Process	Parameter	Ra	nge
	Resin Dose	20	mL/L
SIX	СТ	30, 42	min
	Brine Concentration	37-70	mS/cm
	Ferric sulfate Dose	16.1-76.1	mg/L
Coagulation	Floc aid polymer Dose	0.0-0.5	mg/L
	ACH Dose	24.5-28.6	mg/L
	Caustic Dose	1.4-50.1	mg/L
Ozone	Dose	1.1-5.2	mg/L
Filter 1	LR	2.3-6.0	gpm/sq ft
riitei 1	UFRV	3124-18710	gal/sq ft
Filter 2	LR	6.0-10.0	gpm/sq ft
riitei Z	UFRV	6879-44862	gal/sq ft
Filtor 2	LR	4.6	gpm/sq ft
Filter 3	UFRV	5391-25718	gal/sq ft
Filter 4	LR	2.3-6.0	gpm/sq ft
FIILEI 4	UFRV	3315-16143	gal/sq ft

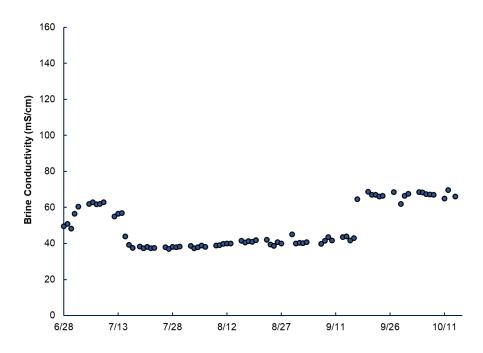


Figure 36 Phase 3 SIX Brine Conductivity (1x Brine Setpoint)

Section 8

SUMMARY OF OBJECTIVES AND RESULTS

Pilot objectives are broken down by each of the pilot skids, respectively.

8.1 Suspended Ion Exchange (SIX®)

Objective 1:

Assess and determine the optimum resin dose and contact time and corresponding required contactor size.

Results: MET WITH EXCEPTIONS

A design resin dose of 20 mL/L and 30 minutes contact time was selected based on Ramboll experience, review of available water quality data, and preliminary jar tests. These settings were used for most of the pilot testing period.

The primary objective was to achieve improved organics removal, where ion exchange is complementary to the existing treatment processes. Table 20 shows a summary of the organics removal performance, measured as TOC or via UV-absorbance. Data is shown as mean weekly values, with standard deviation shown in parentheses.

The trial demonstrated that the proposed design resin dose and contact time can achieve a filtered water TOC of less than 2 mg/L in all seasons. UV absorbance at 254 nm (UVA) is used as a surrogate for TOC for process monitoring. It is understood that the portion of TOC that absorbs UV light at 254 nm is more reactive, and more likely to form disinfection by-products. Daily UVA measurements were taken for the duration of the trial. These showed that the entire process train could reduce UVA by 95-99 percent.

Table 20 Pilot TOC and UVA Removal

	Raw	Filtered	SIX®	Floc/Sed	Ozone/Filters ⁽¹⁾
TOC	mg/L	mg/L	% Removal	% Removal	% Removal
Phase 1	12.5 (3.2)	1.4 (0.4)	61% (8%)	82% (4%)	88% (4%)
Phase 2	6.2 (2.4)	1.2 (0.3)	49% (12%)	71% (9%)	81% (7%)
Phase 3	19.7 (3.5)	1.8 (0.3)	41% (8%)	85% (5%)	91% (2%)
UVA	/cm	/cm	% Removal	% Removal	% Removal
Phase 1	0.52 (0.16)	0.028 (0.053)	67% (7%)	82% (5%)	95% (7%)
Phase 2	0.29 (0.08)	0.009 (0.002)	59% (12%)	74% (10%)	97% (1%)
Phase 3	1.07 (0.27)	0.014 (0.008)	44% (10%)	93% (2%)	99% (1%)

Notes:

(1) Filtered water data is based on Filter 2.

In general, we are comfortable with the range of operations tested and resulting SIX® performance over the range of RW WQ tested. A summary of the performance on the major anions and color is provided in Table 21, Table 22, and Table 23. It is important to note the following when analyzing SIX performance:

- Phase 2 Apparent color removal data is skewed due to limited data and operational effects (SIX® RW tank began accumulating solids and increasing the influent Apparent Color, once this was realized, regular cleaning of the RW tank occurred).
- Phase 2 Bromide data is likely low in part due to operational challenges during this time (eductor clogging and inconsistent resin dosing) as well as the effect of other anions (in particular sulfate in the ASR and copper sulfate biocide that was sprayed on the HR for algae control).
- CT 42 min data is also limited by the amount of data collected at this longer CT.
 Theoretically, SIX® anion removal performance should increase with more contact time.
 Figure 39 below shows UVA removal through the SIX® contactor at various CTs. It was found that SIX® effluent UVA correlated strongly with TOC (Figure 37).

Table 21 Average SIX® Percent Removal at Various Pilot Test Periods, SIX® Resin Doses and CT

	Alkalinity	TOC	Chloride	Apparent Color	Sulfate	Bromide	UVA
Phase 1	51%	61%	+349%	41%	86%	15%	67%
Phase 2	32%	49%	+371%	17%	86%	3%	59%
Phase 3	53%	41%	+321%	29%	92%	29%	44%
Low TOC	42%	56%	+358%	11%	86%	5%	64%
High TOC	53%	41%	+321%	29%	92%	29%	43%
CT 30 min	47%	51%	+348%	20%	88%	13%	57%
CT 42 min	37%	41%	+333%	ND	93%	7%	52%
CT 23 min	23%	43%	+324%	6%	85%	16%	43%
15mL/L	39%	55%	+238%	36%	87%	19%	61%
20 mL/L	47%	50%	+362%	15%	88%	13%	56%

Table 22 Average SIX® Removal (mg/L) at Various Pilot Test Periods, SIX® Resin Doses and CT

	Alkalinity	TOC	Chloride	Apparent Color	Sulfate	Bromide	UVA
	mg/L as CaCO₃	mg/L	mg/L	PCU	mg/L	μg/L	cm ⁻¹
Phase 1	58.04	6.99	+77.84	27.00	10.90	8.75	0.31
Phase 2	43.73	3.39	+87.98		34.72	0.61	0.18
Phase 3	31.20	9.46	+55.16	84.38	15.14	17.54	0.43
Low TOC	50.88	5.05	+82.91	10.17	22.81	2.09	0.24
High TOC	31.20	9.46	+55.16	84.38	15.14	17.54	0.43
CT 30 min	50.46	7.31	+73.94	41.27	18.44	7.02	0.33
CT 42 min	40.50	1.90	+81.60	ND	50.40	4.80	0.27
CT 23 min	34.67	2.80	+70.15	2.50	39.85	12.60	0.11
15mL/L	45.13	5.76	+57.67	28.33	12.97	11.10	0.27
20 mL/L	50.31	7.14	+76.02	39.21	20.78	7.32	0.33

Table 23 Average SIX® Removal as Ionic Equivalence at Various Pilot Test Periods

	Alkalinity	тос	Sulfate	Bromide	Chloride	Sum of RW Anions
	mEq/L	mEq/L	mEq/L	υEq/L	mEq/L	mEq/L
Phase 1	1.22	0.12	0.29	0.09	2.02	3.07
Phase 2	0.87	0.05	0.76	-0.50	2.46	4.37
Phase 3	0.71	0.12	0.30	0.21	1.66	2.34
Low TOC	1.15	0.09	0.50	-0.43	2.22	3.68
High TOC	0.71	0.12	0.30	0.21	1.66	2.34

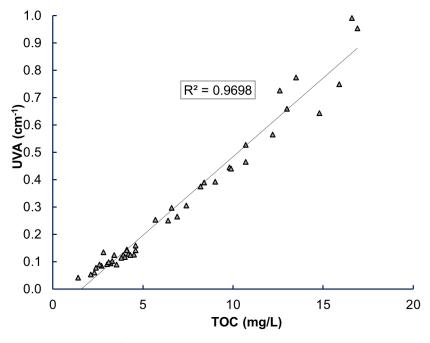


Figure 37 SIX® Effluent UVA vs. TOC

It may be possible that Improved performance would be achieved with a higher resin dose (30 mL/L) and effectively reduce the required contactor size. Although it will be reviewed in further detail during preliminary design with Ramboll and PWNT, the initial recommendation is a resin concentration of 30 mL/L and a contact time of 20 minutes.

As part of the piloting effort, alternate resins were evaluated to determine the potential for a different resin to be bid as part of the procurement process. As part of this evaluation, similar resins were identified (with respect to resin type and physical properties). Resins from Lanxess (original SIX® resin), Du Pont, and Purolite were tested and examined. The Du Pont resin resulted in lower UV absorbance removal than the Lanxess resin (30 percent less). Both Purolite resins removed more UV absorbance (6-17 percent more), but these resins are riskier concerning resin attrition. It also should be noted that the pH of all alternate resins were lower (pHs of 6.0 to 6.4 as compared to th Lanxess pH of 6.8) which denotes higher alkalinity removal. This could have cost implications with respect to the requirement for the addition of caustic/carbon dioxide required as well as salt use. This information will be reviewed in further detail during the preliminary design. More information on this resin evaluation is shown in Appendix D.

Objective 2:

Understand the implications of contactor size on brine use, and volume of waste stream. Assess impact of alternative operational setpoints.

Results: MET IN FULL

When the bench testing is examined, it was noted that the reduction of UV absorbance was correlated to the product of the resin concentration times the contact time. This shows that removing anions is proportional to the amount of resin the contactor. Below in Table 24is a summary of the relationship between resin concentration and contact time. Note that the same shaded colors are proportional to the same amount of resin in the contactor.

Table 24 SIX Percent UV Absorbance Removal vs. Contact Time and Resin Dose. (Data from Ramboll bench testing-1/7/2020)

СТ		F	Resin Dose (mL/L)			
(min)	10	20	30	40	60	
10	14%	47%	63%	71%	78%	
20	48%	70%	78%	80%	82%	
30	63%	77%	80%	81%	82%	
40	71%	80%	81%	82%	82%	
240	81%	81%	82%	82%	83%	

The green shaded cells are equivalent to the same resin inventory used during piloting. Note that the contact time during piloting was 21 minutes. To provide some conservatism, the orange cell equivalent inventory is recommended to be used with 30 mL/L resin concentration and a 20 minute contact time at 140 mgd flow. This assumption will be reviewed during the preliminary design. The brine use is proportional to the anions removed by the resin. Assuming the same resin inventory is used, the brine use will remain the same and contactor sizing will not impact brine use.

The pilot was operated with resin dose of 20 mL/L and contact time of 30 minutes for ~80 percent of the trial. However during full scale operations, resin dose and contact time may vary depending on production requirements, plant availability and water quality. The following additional scenarios were trialed:

- 15 mL/L resin dose at 30 minutes contact time, representing a lower resin dose during low TOC season.
- 20 mL/L resin dose at 23 minutes contact time, representing a higher flow rate if several trains were offline due to planned or unplanned maintenance.
- 20 mL/L resin dose at 42 minutes contact time, representing more typical average flows rather than peak design flow.

Theoretically organics removal through SIX® should be lower if resin dose or contact time is reduced, although this will also vary depending on the raw water UVA and other process settings. Total UVA removal through the entire treatment train is relatively consistent, with greater than 97 percent removal in all scenarios.

Figure 38 shows the UVA removal through SIX® plotted against raw water UVA. Figure 39 shows UVA removal plotted against time, based on grab samples through the SIX® contactor. The figure shows that under most conditions there is minimal addition UVA removal past 20 minutes.

The conclusions that we can draw from this data are:

- 1. During low TOC seasons, a lower resin dose would produce acceptable process outcomes.
- 2. During most seasons, the plant can be operated with shorter contact time (~20 min) if required with minimal negative impacts on operation.
- 3. If contact time is longer (e.g., due to lower plant flows) then organics removal may be higher through SIX®, but this may not make a measurable difference on final water TOC.

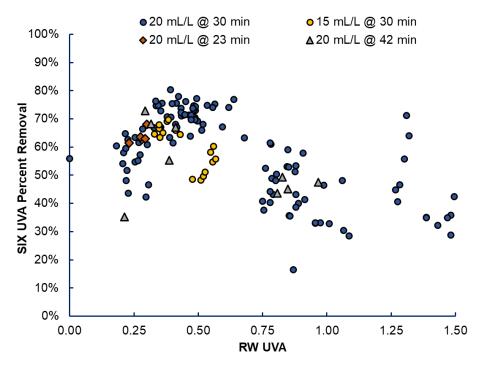


Figure 38 SIX® UVA Removal vs RW UVA at various resin doses and CT.

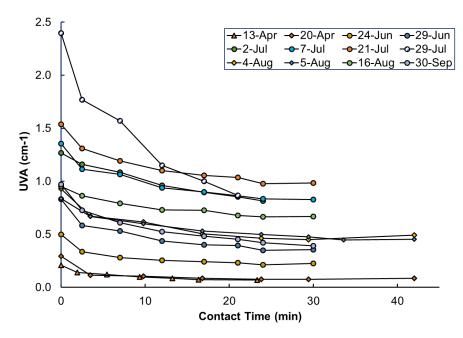


Figure 39 UVA through the SIX® Contactor. All resin doses 20 mL/L. Triangle markers designate 23 min CT, circles designate 30 min CT, diamonds designate 42 min CT.

Objective 3:

Demonstrate the TOC and color removal during different seasons and the impact of other anions on TOC removal.

Results: MET IN FULL

SIX® is an anion exchange process, where negatively charged ions such as bicarbonate, sulfate and organic acids are exchanged for chloride. Therefore the performance of SIX® will depend on the relative concentrations of other anions.

Figure 42 illustrates a profile of the raw water quality over the trial period, based on relative ionic equivalence concentrations of the major anions. The figure illustrates that the most significant competing anion concentration is bicarbonate. The spraying of copper sulfate on the HR for algae control resulted in significantly higher sulfates (a SIX®-competing anion) in the RW. (Note that ASR was turned on during these periods as well contributing to the increased RW sulfate). TOC appeared to be negatively correlated with anion concentration. This is because the highest TOC concentrations come after rainfall events which flush high organic water into the source waters while diluting raw water anions. It was found that SIX® removed 20-50 percent of apparent color from the RW (Figure 40). Similarly, SIX® removed 30-70 percent of RW TOC varying with seasonal RW fluctuations and was influenced by operational changes (Figure 41).

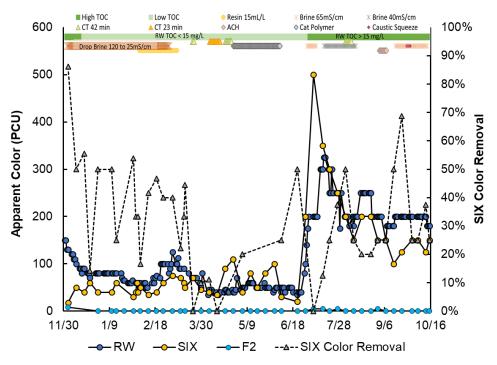


Figure 40 SIX® Apparent Color Removal



Figure 41 SIX® TOC Removal

Table 21 summarizes SIX® TOC and color removal during the various operational test periods and conditions.

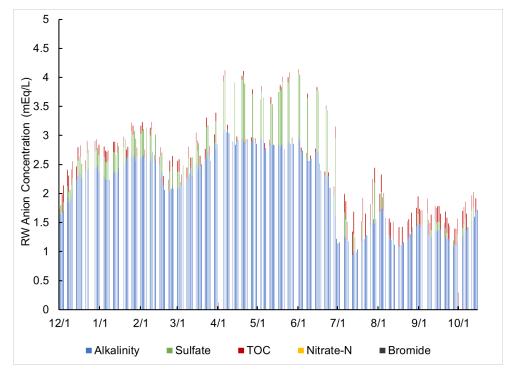


Figure 42 Anionic Equivalence of RW at Pilot (excluding chloride)

Table 25 shows a summary of this data by phase. As for previous sections, there is some variability in process settings that will impact the analysis, but for about 80 percent of the time the pilot was operated at the same resin dose and contact time.

The selectivity of anion exchange resins for different anions is typically: $SO_4^{2-} > NO_3^- > Cl^- > HCO_3^- > OH^-$. This is born out by the data that shows that sulfate removal is relatively consistent, at 87-88 percent. The resin has high affinity for sulfate (relative to bicarbonate). Chloride increases in the treated water due to ion exchange with target and non-target anions. Chloride increase was highest when raw water anion concentration is highest. Figure 43 plots chloride increase against raw water anions. Organics removal does not appear to have a strong correlation to raw water anion concentration. Other factors such as resin dose, TOC concentrations, and TOC fractions are more significant.

Table 25 Anions and TOC Data⁽¹⁾

	Chloride	Alkalinity	Sulfate	ТОС
Raw	mg/L	mg/L as CaCO₃	mg/L	mg/L
Phase 1	21.7 (1.6)	115 (14)	15.5 (3.9)	12.5 (3.2)
Phase 2	23.5 (1.5)	138 (10)	41.8 (12.4)	6.2 (2.4)
Phase 3	14.6 (1.4)	66 (9.3)	15.5 (15.6)	19.7 (3.5)
SIX®	mg/L	mg/L	mg/L	mg/L
Phase 1	94 (15)	56 (18)	2.1 (1.1)	4.8 (1.4)
Phase 2	111 (15)	95 (18)	5.2 (3.0)	2.9 (0.8)
Phase 3	69 (17)	31 (7)	1.3 (1.1)	11.8 (3.2)
SIX® Removal	Increase mg/L	% Removal	% Removal	% Removal
Phase 1	73 (16)	52%	87%	82%
Phase 2	88 (15)	32%	87%	52%
Phase 3	54 (18)	53%	88%	41%

Notes:

(1) Values shown are average weekly data, SD values in brackets.

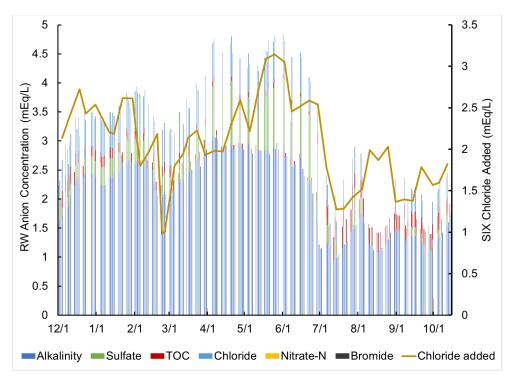


Figure 43 RW Anionic Equivalence and SIX® Chloride Equivalence Adeed

As shown in Figure 44, TOC removal decreased by 30 percent when the copper sulfate was applied. These effects were mitigated slightly by increasing the brine concentration for the SIX® regeneration step. An alternative biocide to replace the copper sulfate with a non-sulfate-based biocide may prove beneficial for SIX® performance. It may also be possible to add ASR downstream of SIX® to avoid sending the higher sulfates in that stream to SIX® (depending on the TOC of the ASR wells).

It is recommended that additional testing of the ASR water occur to quantify the sulfate, TOC and bicarbonate contributions from these wells.

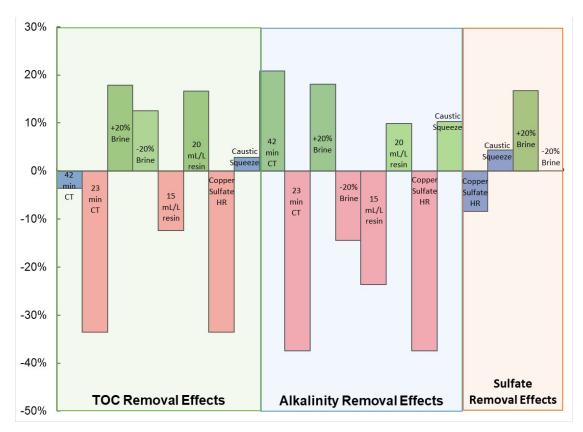


Figure 44 Operational Changes and Effects on SIX® Anion Removal Performance

Liquid chromatography using an organic carbon detector (LC-OCD) can be used to fractionate TOC, based on size exclusion. Figure 45 illustrates this, based on samples taken from July 2021. The existing sedimentation basins are able to remove biopolymers and humic substances. SIX® is able to remove a portion of humic substances and also smaller building blocks. Fractions can be quantitatively estimated based on the area under the curves. Table 26 illustrates how total TOC removal is lower for the piloted process train, primarily due to the increased removal of the building block fraction.

Table 26 TOC Fractionation by Process (all units mg/L)

	тос	Biopolymers	Humic Substances	Building Blocks	Lower MW Substances
Raw Water	27.3	2.55	19.80	2.54	2.41
SIX® (Pilot)	17.0	1.35	12.35	1.70	1.60
SIX® + Coag (Pilot)	2.6	0.03	0.06	0.78	1.70
Sed Basins (Full Scale)	4.6	0.10	0.62	1.85	2.05

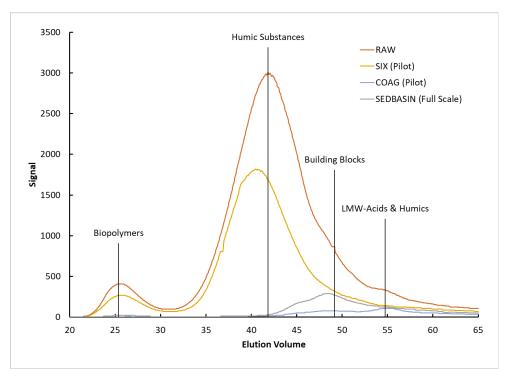


Figure 45 LC-OCD Results - SIX® vs. Full-Scale (sample date July 2021)

Objective 4:

Understand the long-term fouling characteristics of the suspended ion exchange resin (limited to 10.5-month study period).

Results: MET IN FULL

No biological fouling of SIX® resin was observed during the pilot. However, it is important to note the use of chloraminated water for brine dilution, resin rinsing and full resin volume (FRV) slurry. Using a non-chloraminated water may result in different effects and flexibility should be included in the full-scale (to use either SIX® effluent or plant water). It also should be remembered that there are periods when the plant uses free chlorine in the distribution system and these impacts on the resin. Currently, the SIX® design scope assumes the use of either chloraminated water or water from the SIX® effluent for brine dilution.

When a caustic squeeze was completed towards the end of the pilot (i.e., pH 12 with caustic brine soak for resin cleaning), the overall TOC removal did not increase significantly. This demonstrates that long-term fouling was not an issue. It should be noted that other anion removal (bicarbonate did increase significantly) and a significant amount of organics were removed by the caustic squeeze along with a decrease in microflocculation was observed, so the capability to do a caustic squeeze will be included in the full-scale design.

Objective 5:

Understand potential biological fouling's impact on settleability (resin).

Results: MET WITH EXCEPTIONS

No biological fouling of SIX® resin was observed during the pilot; therefore resin settleability was not affected. See the discussion above regarding the source water for brine dilution and the ability to do a caustic squeeze.

Objective 6:

Understand the removal of bromide from the SIX® process.

Results: MET WITH EXCEPTIONS

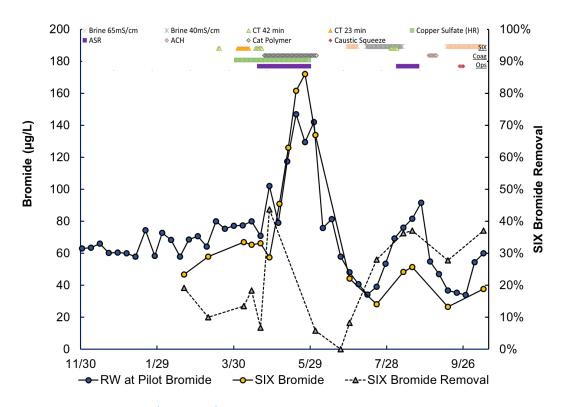


Figure 46 SIX® Bromide Removal

In general, it was found that SIX® removes 15-40 percent of the RW bromide. The most critical time of year for bromide removal is while the ASR recovery is occurring - this water carries high bromide levels. The ASR was purposefully turned on to test the SIX® performance under these conditions. Unfortunately, operational issues (eductor clogging) resulted in non-representative removal data. During the ASR recovery period, there were a few weeks where the SIX® effluent bromide was higher than the RW bromide, implying that SIX® was leaching bromide back out into the water - this is likely instead due to poor resin dosing and uncharacteristic/nonrepresentative removal data. Table 21 summarizes SIX® bromide removal during the various operational test periods and conditions.

Objective 7:

Understand the removal of bicarbonate from the SIX® process.

Results: MET IN FULL

Alkalinity was closely monitored during the pilot and proved to be a highly critical parameter affecting pilot performance. As an anion, bicarbonate is removed through the SIX® process; however, its relatively low removal affinity results in variable removal depending on the presence of other anions. It was anticipated that SIX® would remove bicarbonate and may require alkalinity to be added back in downstream and some alkalinity addition occurred during the pilot. Bicarbonate was the most sensitive anion with respect to brine concentration and might be the constituent that is utilized full-scale for operations.

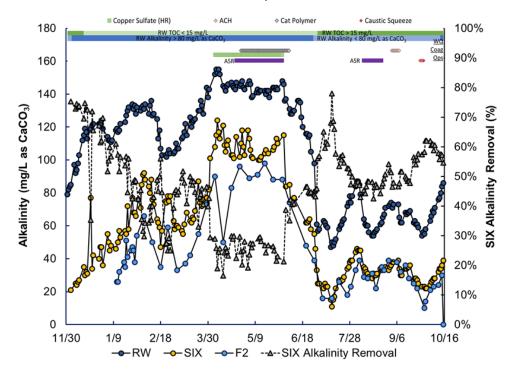


Figure 47 SIX® Alkalinity Removal

At the start of the pilot, SIX® alkalinity removal mimicked TOC removal, in that it started high with the conservative brine concentration and declined with the lowering of the brine concentration/use (Figure 47). During this time, it was realized that this alkalinity removal (pH buffer) resulted in lower coagulation pH, achieving higher TOC removal with less ferric than the previous MIEX® piloting. This effect remained constant throughout the pilot, but the alkalinity removal varied due to RW WQ shifts and operational changes.

During Phase 2 of the pilot, the ASR and Copper Sulfate caused a significant shift in the RW anion concentrations. Due to its lower affinity for removal versus sulfate and TOC, alkalinity removal dropped (Figure 48). During Phase 3, alkalinity was observed to influence the severity of microflocculation and filter headloss issues. It was observed that with the addition of 20 mg/L of bicarbonate, there was a 200 percent improvement of UFRVs on the the subsequent filter run (Figure 49).

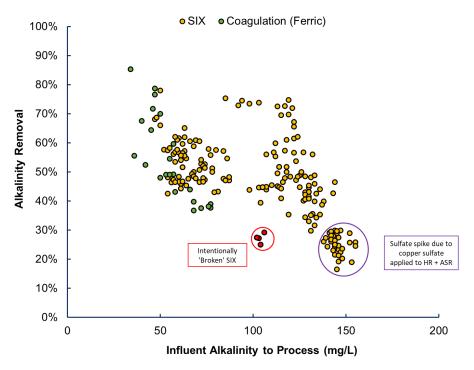


Figure 48 Pilot Alkalinity Removal (effect of sulfate)

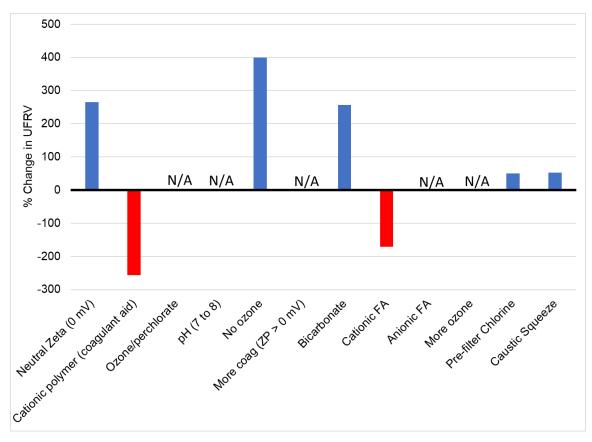


Figure 49 Microflocculation Control Technique Effects on UFRV. N/A means no significant change.

SIX® Alkalinity removal, at first a concern, was observed to be instead in a tool for monitoring performance and managing operations. Depending on seasonal RW alkalinity, SIX® could be operated to achieve desired effects based on the effluent alkalinity. This is a significant differentiating factor between the SIX® process and MIEX® process, whose resin has very high affinity for TOC, but very low affinity for other anions (Figure 50).

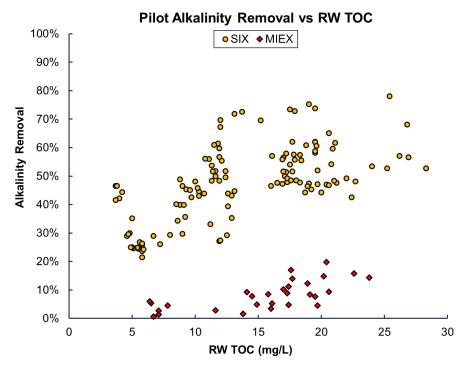


Figure 50 SIX® and MIEX® Pilot Alkalinity Removal vs. RW TOC

Based on the alkalinity removal observed by SIX®, it is expected that alkalinity will be required to be added back in at full-scale, but only certain times of the year. It is recommended that a combination of carbon dioxide and caustic be added downstream of floc/sed to maintain Finished alkalinity above 46 mg/L as CaCO₃, based on plant historic lows.

The RTW model for water process and corrosion chemistry was used to estimate required carbon dioxide and caustic doses to achieve the desired finished WQ (CCPP 0-13 mg/L, pH < 8.5, finished alkalinity >46 mg/L as CaCO₃). The range of CCPP that AWWA targets as a goal is 4-10 mg/L as CaCO₃. With the range of water quality that the City experiences, this range was widened to above 0 to below 13 mg/L as CaCO₃. This would be similar to the ranges that the City currently experiences. Table 27 provides a summary of these chemical requirements. It was found that RW alkalinity ranges strongly correlate to ranges of required chemicals. When RW alkalinity is greater than 100 mg/L as CaCO₃, it is not anticipated that any chemical addition be required to meet the FW alkalinity goals.

· ·	3	/ \	<i>3</i> /
	RW Alk < 100	RW Alk < 85	RW Alk < 65
Carbon Dioxide Dose (mg/L)	0	18	27
Caustic Dose (mg/L)	3	20	28
Anticipated FW pH	8.2	8.4	8.5
Approx. Number of Days	20	58	72

Table 27 Required Chemical Dosing to Achieve Desired Finished Alkalinity (RTW findings)

8.2 Conventional Treatment (Coagulation, Flocculation, Sedimentation)

Objective 8:

Understand the impact of the SIX® process on the charge demand of the raw water seasonally.

Results: MET IN FULL

At the start of the pilot, initial ferric sulfate demand was determined based on dose required to achieve neutral zeta potential (0 mV). It was quickly realized that this approach provided good filter performance (especially when compared to full-scale filters). Carollo provided an onsite Zeta meter in March for routine zeta titration jar tests. Zeta titrations were performed approximately weekly, or as needed with shifts in RW WQ. The resulting ferric dosing represents the results of these titrations Figure 51.

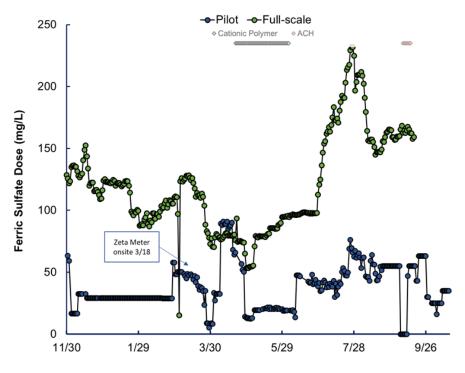


Figure 51 Pilot Ferric Sulfate Dose. Note the testing of alternate coagulants and subsequent lower Ferric dose during those times.

Objective 9:

Establish the impact of pH adjustment versus metal salt coagulants on additional TOC removal and ozone demand.

Results: MET IN FULL

Caustic dosing of pH control was brought online pre-ozone January 12, 2021. The caustic dose was controlled by the demand to achieve pH 7 (note that pH 8 was briefly tested September 13). Figure 52 shows the pilot caustic dosing generally trending inversely with coagulation pH and the resulting finished pH. The caustic dose in this figure is corrected to assume a ferric sulfate coagulant (coagulation pH was much higher during the testing of Cationic polymer and ACH coagulant alternatives, and so, caustic dose was low during that time and not representative). As previously discussed, SIX® alkalinity removal aided in overall pilot TOC removal due to improved ability to depress pH during coagulation (Figure 53). These effects are not available with the use of a coagulant that does not depress the pH (cationic polymer and ACH). Theoretically, lower incoming TOC will result in a lower ozone demand; that was observed to be the case during the pilot (Figure 54).

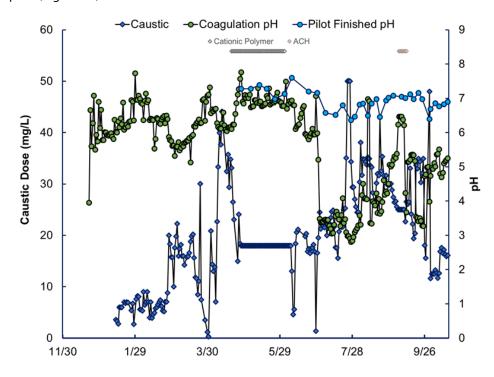


Figure 52 Caustic Dose to Achieve Neutral pH with Various Coagulants

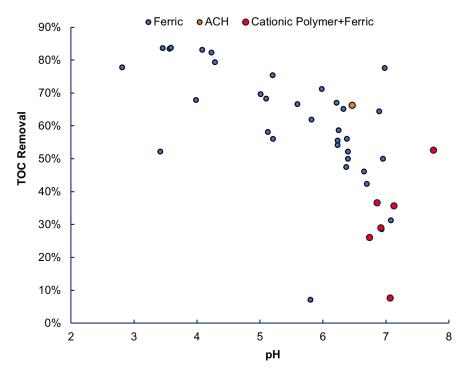


Figure 53 Conventional Treatment TOC Removal vs. Coagulation pH

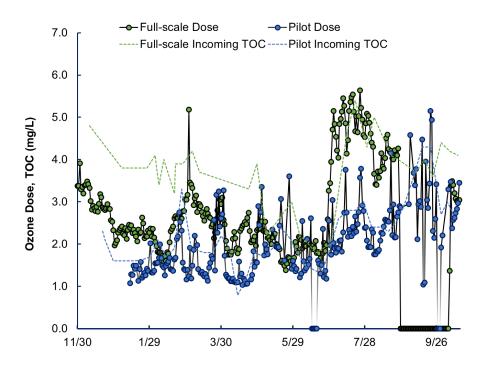


Figure 54 Full-Scale vs. Pilot Ozone Dose and Pre-Ozone TOC

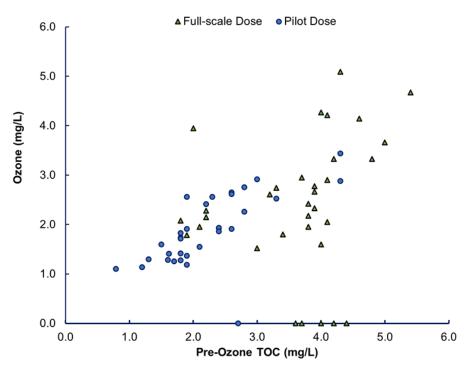


Figure 55 Ozone Dose vs. Pre-Ozone TOC

Objective 10:

Establish the impact of pH adjustment versus metal salt coagulants on the settleability and dewaterability.

Results: MET IN FULL - more data would be better

Based on Table 28, better settleability occurred at lower coagulation pH. Dewaterability was tested once during the pilot while using the ferric sulfate coagulation scheme and two different floc aid polymers. Pilot coagulation chemistry at the time of sampling was 60 mg/L ferric sulfate and 0.5 mg/L FA polymer (Polydyne C3223), resulting in a coagulation pH of 3.7. Upon arrival to external testing facility, solids sample pH was 6-6.5. The subsequent Belt Press and Centrifuge dewatering results are summarized in Table 28. These results are comparable to full-scale solids data from the same test period (July/August 2021) resulting in 25.6 % average solids cake.

 Table 28
 Pilot Solids Bench Test- Dewatering Expected Performance

	Belt Press 2 Belt Extended Klampress			Belt Press 3 Belt KPZ (8 roller)		e-Aldec 125
Hydraulic Loading (gpm/m)	100-110 @ 0.79%	100-110 @ 0.79%	160-180 @ 0.79%	160-180 @ 0.79%	250 gpm @ 0.79%	250 gpm @ 0.79%
Solids Loading	395-435	395-435	633-712	633-712	988 lbs/hr	988 lbs/hr
Cake Solids	18-19%	19-20%	18-19%	19-20%	20-21%	21-22%
Capture (lbs/hr/m)	94-95%	94-95%	94-95%	94-95%	93-95%	93-95%
Polymer Manufacturer	Plant Polydyne C3223	Polydyne C6266PWG (Cationic, Emulsion, Potable)	Plant Polydyne C3223	Polydyne C6266PWG	Plant Polydyne C3223	Polydyne C6266PWG
Polymer Dosage (neat lb/ton)	14-19	46-51	17-22	53-58	25-35	68-78
Activity of Polymer	100%	41%	100%	41%	100%	41%
Active Polymer Dosage (lbs/ton)	14-19	19-21	17-22	22-24	25-35	28-32

Objective 11:

Determine the potential for using or supplementing with a cationic polymer and the impacts on TOC, ozone demand, settleability, and dewaterability.

Results: MET IN FULL

The use of a cationic polymer for supplementing ferric sulfate was tested during April and May of the piloting. From Figure 56 and Figure 57, it was determined that coagulation performance and subsequently filter performance declined. It is important to note that during this time period, ASR and Copper Sulfate to the HR was also occurring. It is likely that these streams caused additional challenges (SIX® performance was negatively affected by the higher RW sulfate concentrations), which contributed to the poor results when testing the Cationic Polymer. It may be the case that the cationic polymer would work better during different times of the year. Figure 58 and Figure 59 show filter performance while normal cationic polymer coagulation chemistry was in use (1.5-4.0 mg/L + 15-20 mg/L ferric sulfate) and just after the cationic polymer was shut off with ferric kept at the low dose. These figures demonstrate that the cationic polymer was not helping as far as filter performance in addition to TOC removal. Due to the sub-par performance using the cationic polymer, solids dewaterability was not tested under this condition.

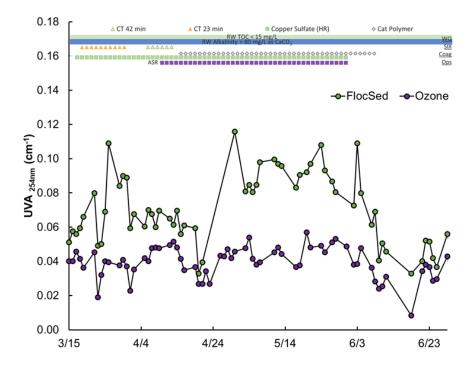


Figure 56 Floc/Sed and Ozone UVA during Cationic Polymer Test Period

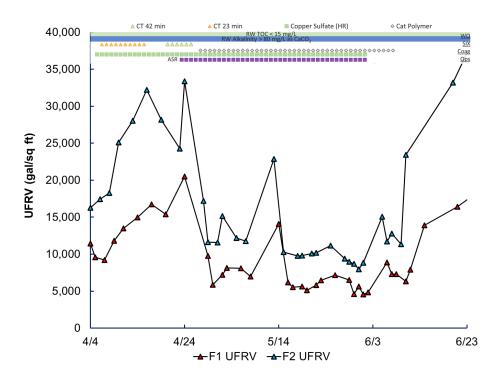


Figure 57 Filter UFRV during Cationic Polymer Test Period

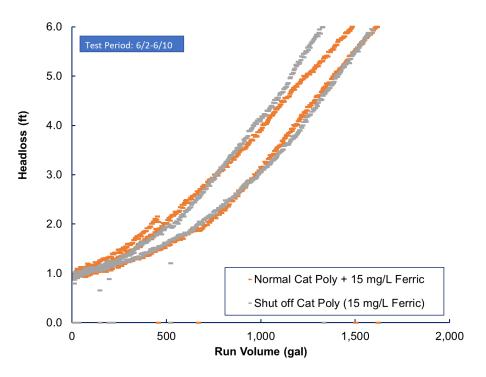


Figure 58 Filter 1 Headloss with and without Cationic Polymer Coagulant

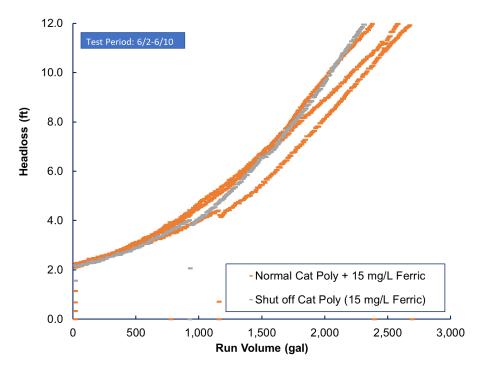


Figure 59 Filter 2 Headloss with and without Cationic Polymer Coagulant

Objective 12:

Determine the best floc aid polymer for the different coagulation schemes. Evaluate potential impacts of conventional floc/sed versus ballasted flocculation.

Results: MET WITH EXCEPTIONS

Three different floc aid polymers were tested at the pilot scale (Table 29). For most of the pilot, the current plant polymer was used and worked well. Because this polymer works well at the full-scale, alternative floc aid polymers were not tested until poor filter performance was observed during Phase 3 of the pilot. During periods of observed Microflocculation and low coagulation pH, it was observed that floc aid polymer had negative effects on filter performance (Figure 60 and Figure 61). Based on the headloss profiles of these filter runs, it appears that the Polydyne floc aid polymer was contributing to additional headloss on the filters and is likely not removed after one backwash.

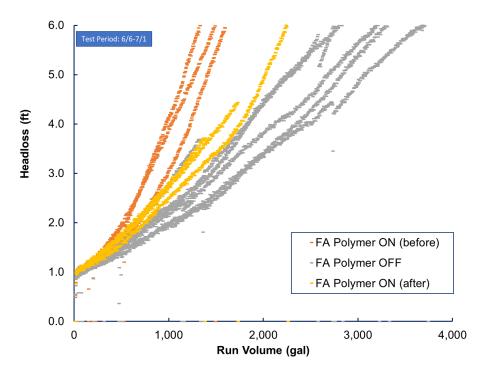


Figure 60 Filter 1 Headloss Curves with and without Floc Aid Polymer during Microflocculation

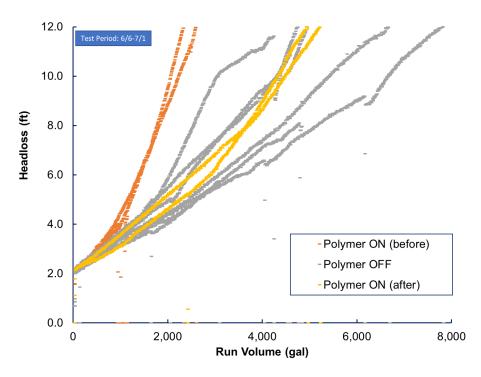


Figure 61 Filter 2 Headloss Curves with and without Floc Aid Polymer during Microflocculation

In reaching out to Actiflo® technical staff, anionic polymers were recommended in an attempt to mitigate these headloss issues. During this test period, alkalinity was very low and the resulting coagulation pH was consistently below pH 4. Based on coagulation pH, the anionic polymers theoretically perform better. With that, two alternate anionic floc aid polymers were tested (Table 29). These polymers did not improve filter runs, and so testing continued with the Polydyne cationic floc aid polymer.

Table 29 Tested Floc Aid Polymers

Floc Aid Polymer					
Polydyne C3223 (current plant poly)	Cationic				
Hydrex 3511	Anionic				
Hydrex 3521	Anionic				

Although ballasted flocculation was not tested at the pilot scale, the current full-scale floc aid polymer (Polydyne C3223) was heavily relied upon for testing due to the fact that we know it works well with the current Actiflo® at the plant.

8.3 Ozone

Objective 13:

Determine the overall ozone demand and dose with both the ion exchange and coaquiation/flocculation/sedimentation.

Results: MET IN FULL

Due to the lower pre-ozone TOC at the pilot compared to full-scale, ozone demand was also lower (Table 30). The amount by which the ozone demand was lower varied seasonally with shifts in RW WQ and pilot operations. Table 30 provides a summary of the average reduction in ozone demand at the various phases of testing.

Table 30 Reduction in Ozone Demand at Pilot vs. Full-Scale

	Ozone Dose Reduction	Avg Pilot Pre-Ozone TOC	Avg Full-Scale Pre-Ozone TOC
Phase 1	40%	2.0	3.9
Phase 2	24%	1.7	2.5
Phase 3	41%	2.9	4.2
Pilot Avg	30%	2.2	3.6

Objective 14:

Determine the approach to contact time based on the demand curves for each of the ion exchange and coagulation approaches.

Results: MET IN FULL

Through pilot testing of three different coagulant chemistries, ferric sulfate was found to be the only coagulant that worked well achieving the pilot goals (<2 mg/L TOC).

Based on the literature, ozone:TOC ration and hardness:TOC ration have a significant impact on microflocculation (Figure 62). During low TOC/high hardness season (typically winter and spring), the ozone:TOC ratio is in a range that avoids particle instability, but with a sharp increase in TOC and drop in hardness, the ozone:TOC ratio shifts (in combination with a shift in alkalinity), that results in more particle instability. During observed microflocculation, low ozone residual was tested in an attempt to reduce particle instability. Based on the headloss profile shown in Figure 63, it likely will not be possible to mitigate microfloc headloss effects by only reducing ozone doses. Microflocculation is further discussed under Objective 20.

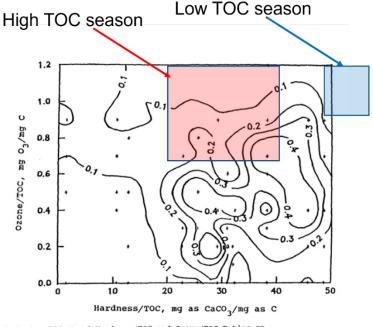


FIGURE 37. Effect of Hardness/TOC and Ozone/TOC Ratios on Particle Stability in Ozonated Waters. (Contours show different α values; the asterisks (*) show the actual experimental data points.)

Figure 62 Literature Findings of Ozone:TOC Ratio and Hardness:TOC Ration on Particle Stability and Microflocculation Potential. Alpha values signify particle collision efficiency; higher collision efficiency means floc will be stickier and cause more filter headloss.

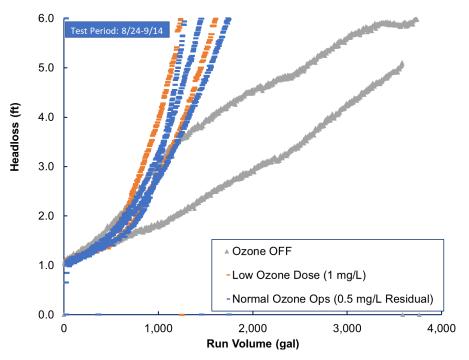


Figure 63 Filter 1 Headloss Curve during Microflocculation - Low Ozone Dose

Objective 15:

Determine the potential for bromate formation and associated mitigation measures based on the overall ozone demand and the selected pretreatment approaches. (This analysis shall include the impact of the ASR well if the City is running the well during piloting).

Results: MET IN FULL

Bromate formation at the pilot-scale was monitored throughout testing; more frequent sampling occurred while ASR was on with higher RW Bromide. Although bromate control strategies were not implemented at the pilot, the reduced ozone demand reduced bromate formation. In addition to the reduced ozone demands at the pilot, SIX® removes bromide resulting in less bromate formation potential. Figure 64 shows bromate concentration in the full-scale finished water and pilot effluent; of note, neither exceeded the MCL of 10 μ g/L at any time. Based on the data from the ASR period, full-scale bromate control strategies will be successful at mitigating the additional bromate formation seen at the pilot during this time although the ability to mitigate bromate formation should be maintained.

The bromide concentrations tested during this pilot period were slightly below annual average based data since 2014 (Table 31). Figure 65 shows historic bromide concentrations and the tendency to spike when ASR is on, which has varied annually.

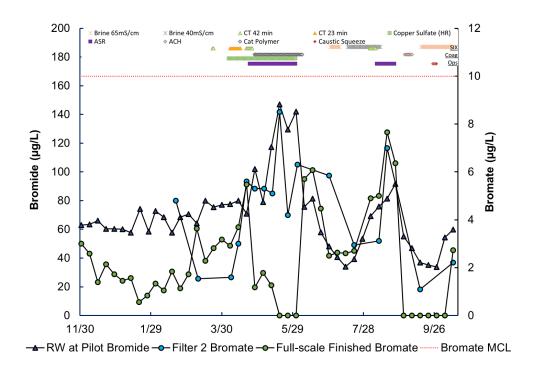


Figure 64 Bromate Formation at the Pilot and Full-Scale

Table 31 Average and Maximum Historic Full-Scale Bromide (all units in $\mu g/L$)

	HR RW		Pre C	zone
	Avg	Max	Avg	Max
2014	62.0	184	63.5	139
2015	71.8	221.5	75.7	120.7
2016	56.3	165.2	60.7	140.5
2017	167.9	83.0	151.7	927.1
2018	83.5	82.3	84.9	289.4
2019	66.5	72.2	69.9	181.2
2020	70.2	79.2	71.1	250.9
2021	66.2	84.4	66.6	147.0
Avg	80.6	121.5	80.5	274.5

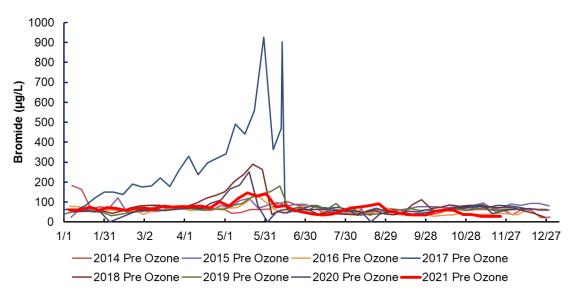


Figure 65 Historic Full-Scale Pre-Ozone Bromide (includes ASR flows)

Objective 16:

Determine the chlorine demand when ozone is not operational or if ozone is being used for oxidation only and the approach to CT.

Results: MET WITH EXCEPTIONS

Chlorine demand was measured during three rounds of demand/decay and SDS testing. Instantaneous chlorine demand for those samples when ozone was on is summarized in Table 32. Instantaneous demand data was collected after 10 min reaction time. It was found that pilot bench-scale chlorine demand testing was similar to full-scale; however it is expected that with the lower finished TOC, there will be lower chlorine demand with SIX® at the full-scale long-term.

Table 32 Chlorine Demand Summary

	Date Sampled	TOC (mg/L)	Instantaneous Chlorine Demand (mg/L)
	7/20/2021	1.7	0.90
Pilot	8/17/2021	1.7	1.40
	10/12/2021	1.5	0.55
	7/20/2021	2.9	0.90
Full-scale	8/17/2021	2.4	0.90
	10/12/2021	3.3	1.05

Objective 17:

Determine the impacts of the different pretreatment methods on the potential for sidestream injection (in terms of getting CT with one application point).

Results: NOT MET

Sidestream ozone injection may still be possible but was not tested at the pilot-scale. With the lower ozone demand and lower TOC experienced at the pilot, a reduction in the requirement to add ozone across the contactor to maintain an ozone residual is expected.

Objective 18:

Determine the impacts and approach to quenching (hydrogen peroxide only).

Results: MET IN FULL

Ozone quenching with hydrogen peroxide was tested as a potential microflocculation mitigation strategy. Hydrogen peroxide was dosed with two different approaches: at low dose (0.5 mg/L) at the end of the ozone contactor and also to at the front of the contactor to quench ozone residual (approx. $0.5 \text{ mg/L} \text{ H}_2\text{O}_2$ per mg/L O_3 dose). The resulting effects on filter performance were insignificant or resulted in worse performance (Figure 66).

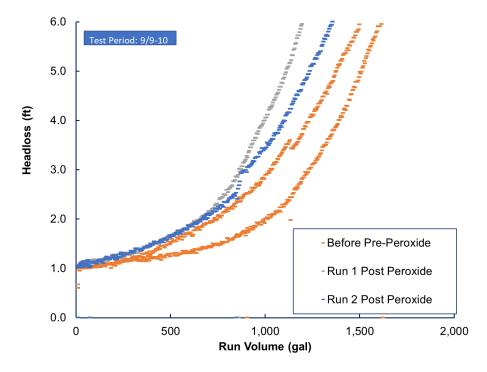


Figure 66 Filter 1 Headloss Curves with and without Peroxide

Objective 19:

Impact of ozone dose and pretreatment on TOC removal through biological filtration.

Results: MET IN FULL

Figure 67 shows the pilot and full-scale filter performance versus TOC removed by the filters. On average, the amount of TOC removed by the pilot filters was lower than full-scale, predominantly due to the lower TOC going on to the filters. Theoretically, it is assumed that with higher TOC removal through the filter, the biology on the filter media is more active, and will therefore contribute to higher headloss and lower filter UFRVs. It is interesting to note that full-scale filter performance does not follow this trend, with relatively consistent UFRV regardless of TOC removed; this implies that headloss issues at full-scale are likely due to non-biological factors, at least in part.

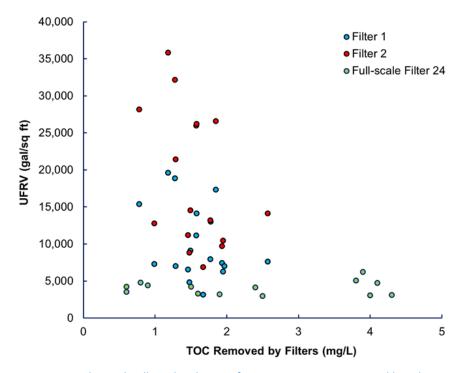


Figure 67 Pilot and Full-Scale Filter Performance vs. TOC Removed by Filter

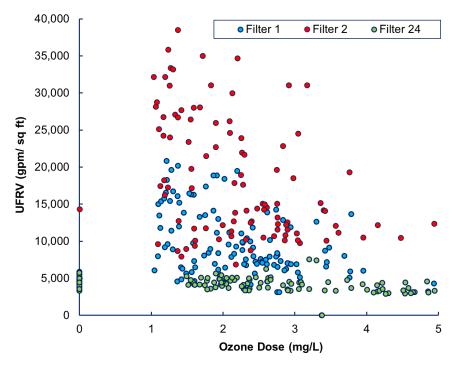


Figure 68 Pilot and Full-Scale Filter Performance vs. Ozone Dose

New Objective 20:

Understand the implications of ozone on Microflocculation and filter headloss.

Results: MET IN FULL

During high TOC season and Phase 3 of pilot testing, a significant increase in filter headloss accumulation rates was observed. Through literature review of pre-ozonation and its impacts on coaqulation/flocculation, it was determined that these changes in headloss accumulation were likely due to the presence of microflocculation with intermediate ozone (Figure 63). There are many factors involved in the formation of microfloc (largely studied with pre-ozone, but not for intermediate ozone). These factors include ozone:TOC, hardness:TOC (Figure 62), calcium concentration, and alkalinity concentration. During a unique WQ test period (highest RW TOC, fluctuating alkalinity), dramatic effects on filter performance were observed with changing alkalinity (Figure 69 and Figure 70). At alkalinity below 80 mg/L, headloss curves take on an exponential shape (as opposed to the linear headloss curve that we would expect). It was also during this time that filters began washing on turbidity (assumed due to very high TOC and fragile floc) - this was the only time during pilot testing that filters backwashed on turbidity. Figure 49 summarizes the control strategies tested and the corresponding results on filter performance. With the addition of alkalinity, UFRVs improved; however this improvement was not consistent over time. The addition of pre-chlorine to meet the chlorine demand did, however, result in improved filter performance throughout the rest of the pilot (approximately one month of testing). Figure 71 and Figure 72 show the shift towards flatter headloss curves in the filters with the addition of pre-chlorine.

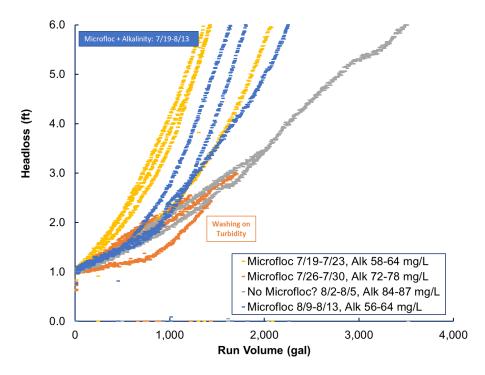


Figure 69 Filter 1 Headloss - Observed Microflocculation and Alkalinity Effects

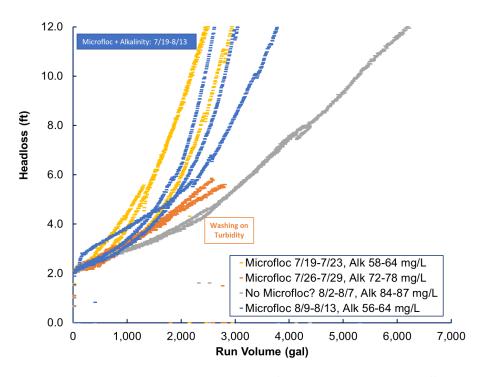


Figure 70 Filter 2 Headloss - Observed Microflocculation and Alkalinity Effects

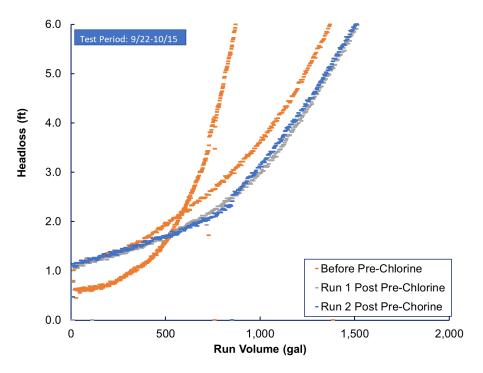


Figure 71 Filter 1 Headloss vs. Run Volume - Pre-Chlorine Effects during Microflocculation LR changed from 4.6 to 6.0 gpm/sq ft between the two 'pre-chlorine' runs.

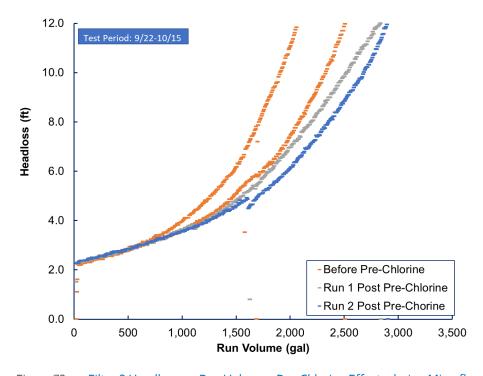


Figure 72 Filter 2 Headloss vs. Run Volume - Pre-Chlorine Effects during Microflocculation

In August, a new tool allowed for the measuring of head pressure incrementally through the filter media bed. This data seems to corroborate microflocculation at the filters. With microflocculation, pressure accumulates exponentially at the very top of the filter media, with minimal headloss occurring just 10 inches below. When chlorine was added to meet demand, an improvement was observed in the headloss at the surface of the filter bed, and although minimal, resulted improved UFRV by 25 percent. (Figure 73)

As mentioned, the SIX® resin underwent chemical cleaning at the end of September. The caustic squeeze also resulted in improved filter runs. Figure 73 and Figure 74 show filter runs just before caustic cleaning (at LR 4.6) and just after caustic cleaning (LR 6.0); even at the higher loading rate, it was observed that headloss accumulation at the top of the media bed improved and the curve flattened out. These effects were short-lived and initial improvements diminished after a few runs.

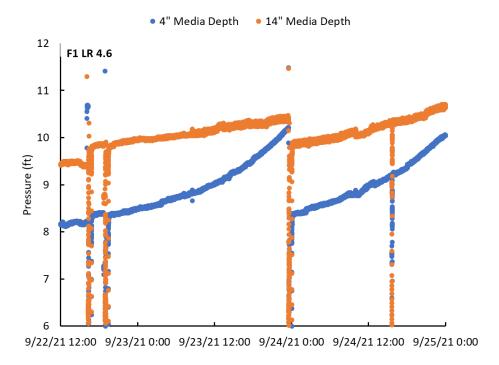


Figure 73 Filter 1 Incremental Headloss - Observed Microflocculation with Headloss Curves at the Top of the Media Bed
F1 LR = 4.6 gpm/sq ft. Run 1: 1ppm Chlorine, Run 2: 2ppm chlorine
(meeting demand).

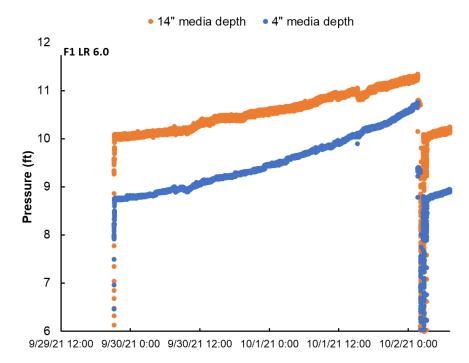


Figure 74 Filter 1 Incrememntal Headloss - Minimal Microflocculation with First Run Post-Caustic Squeeze
F1 LR = 6.0 gpm/sq ft.

With the observation of microflocculation and headloss accumulation at the surface of the media bed, a 'bump' test was performed to gradually ramp up filter loading rate and observe effects. It was observed that at higher loading rates, there is a shift in particles deeper into the bed. This was confirmed by taking grab turbidity samples with the ramping LR; Figure 75 shows the spiking of turbidity at higher LRs, which then seems to stabilize. This shift in particle distribution is reinforced when the LR is returned (see head pressure at both LR 6.0 steps), the head pressure is lower, effectively shifting these particles and utilizing more capacity of the filter bed and achieving higher UFRVs. UFRVs were observed to increase in both Filter 1 and Filter 2 with increased LR up to the LRs tested.

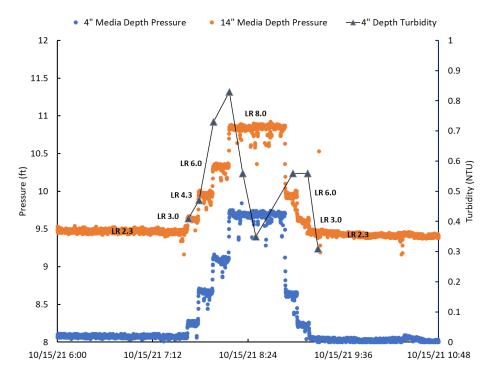


Figure 75 Filter 1 Incremental Headloss with 4 inch Turbidity F1 LR = 2.3-8.0 gpm/sq ft.

8.4 Filters

Objective 21:

Evaluate different filter loading rates and media configurations (sizes and depth) based on pretreatment approaches.

Results: MET IN FULL

Filter loading rates did not remain constant throughout the pilot. In general, filter loading rates were raised over the pilot test period to bracket performance and understand filter performance at varying loading rates. Filter 1 (control) operated at loading rates up to 6 gpm/sq ft (with LR bump tests up to 8 gpm/sq ft with no effect on turbidity) (Figure 76 and Figure 77). Similarly, Filter 2 was operated at loading rates up to 8-10 gpm/sq ft with no effect on turbidity (Figure 70 and Figure 72).

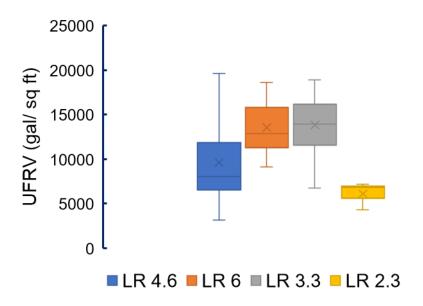


Figure 76 Filter 1 UFRV vs. Filter Loading Rate

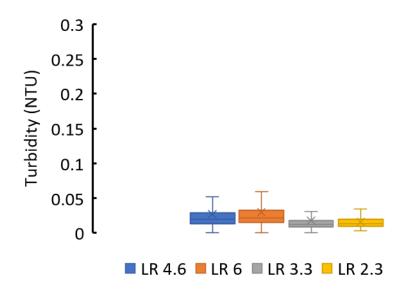


Figure 77 Filter 1 Turbidity vs. Run Volume at Various Loading Rates (LR gpm/sq ft).

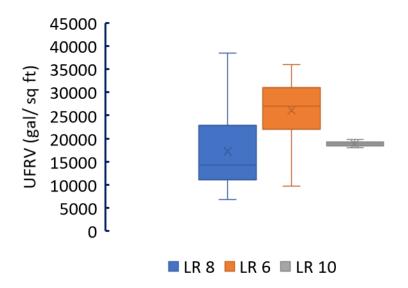


Figure 78 Filter 2 Headloss vs. Run Volume at Various Loading Rates (LR gpm/sq ft).

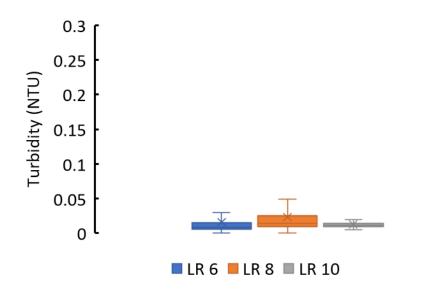


Figure 79 Filter 2 Turbidity vs. Run Volume at Various Loading Rates (LR gpm/sq ft).

Objective 22:

Evaluate the combined use of hydrogen peroxide and phosphorus addition (if needed) in combination with pH adjustment to improve filter loading rates.

Results: MET IN FULL

- As previously discussed, hydrogen peroxide was tested to quench ozone during microflocculation periods; it was not found to improve performance.
- Similarly, based on Phos-Gly enzyme analysis, filters were not found to be phosphoruslimited and so phosphorus was not applied to the filters. To note, the City has also experimented with phosphorus and hydrogen peroxide addition and has found no effect on the filters.
- Filters were briefly operated at pH 8 to observe effects; no significant effects were observed on filter performance or headloss accumulation rates (Figure 80).

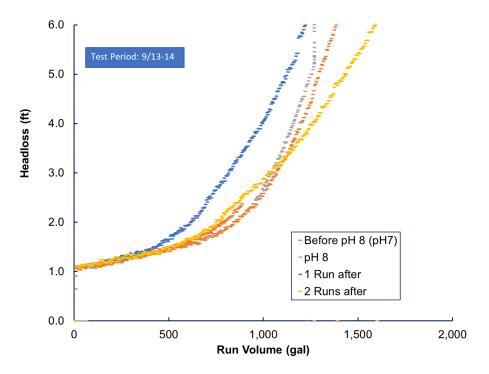


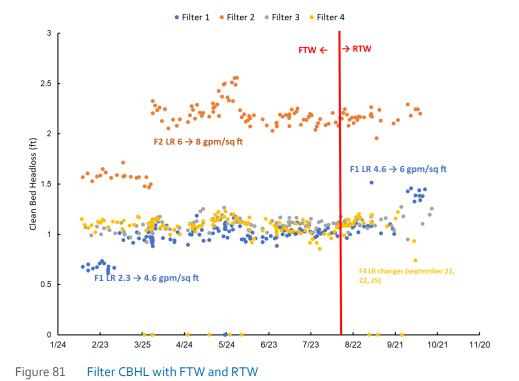
Figure 80 Filter 1 Headloss at pH 7 vs. pH 8

Objective 23:

Evaluate the impacts of improved backwash protocol, different media configurations, and potential filter design changes (additional headloss).

Results: MET IN FULL

Filter backwash protocol was updated September 5 to shift from FTW to a RTW protocol. This RTW procedure requires less BW water and may improve filter turbidity during transitions from BW to service. Table 33 shows a summary of UBV and UBWV based on these changes. It was observed that this change in BW regime to RTW did not impact clean bed headloss (CBHL) (Figure 81).


Table 33 Filter UBWV and UBV with FTW and RTW Backwash⁽¹⁾

	UBWV (gal) RTW FTW ⁽²⁾		URV (gal/sq ft)		
			RTW	FTW ⁽²⁾	
F1	39.2	115.8	199.7	589.6	
F2	54.2	109.6	275.9	558.0	
F3	51.7	96.6	263.5	492.2	
F4	46.0	83.0	234.4	422.5	

Notes:

- (1) FTW was tested 12/17/20-9/5/21; RTW was tested 9/5/21.
- (2) FTW assumes FTW step F1: 20 min, F2: 10 min, F3: 15 min, F4: 16 min and LR F1: 4.6, F2: 8, F3: 4.6, F4: 3.7 gpm/sq ft (does not acct for ramping).

Both scenarios assume refill duration: 3 min.

(Carollo

Objective 24:

Perform analysis of biological growth with different pretreatment (ability to handle T&O, TOC removal).

Results: MET IN FULL

In general, the filters during pilot testing did not receive as high TOC or T&O as with full-scale (a result of effective upstream process operations), and so the removal burder on the filters was low. As previously discussed, nutrient supplementation was investigated but not tested due to the measured lack of nutrient deprivation. The use of peroxide and chlorine (bleach) pre-filters was tested as a microflocculation control (to mitigate high headloss issues). However, these pre-treatment schemes were tested during Phase 3 of testing when there was negligible T&O compounds to determine filter removal performance.

T&O compounds were controlled well by COT operators with the spraying of the HR with copper sulfate during algae season. MIB and Geosmin were detected in the RW during the pilot as seen in Figure 82; all of the detectable T&O occurred during Phase 2 of pilot testing. Due to short time frame with T&O was in the RW, it is difficult to assess filter T&O removal capabilities; Figure 83 shows the pre-filter T&O levels and subsequent finished T&O. Finished T&O was consistently below the level of detection (1 μ g/L) throughout the pilot.

Figure 82 RW Geosmin and MIB

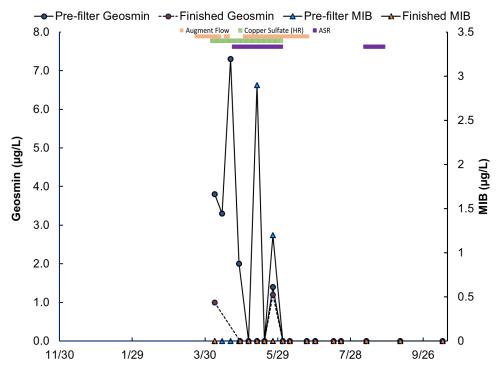


Figure 83 SIX® Pre-Filter and Finished T&O

The ability of SIX® to remove both organics and alkalinity resulting in more effective coagulation and lower finished water TOC. The average finished water TOC from the SIX® pilot was 1.4 mg/L as compared to the full-scale TOC 2.4 mg/L. The lower TOC results in lower ozone demand. This lower ozone demand and competing reactions provide more ability to oxidize taste and odor compounds while minimizing bromate formation (due to lower ozone demand).

Section 9

FULL-SCALE EC, MIEX®, AND SIX® COMPARISON

9.1 Ion Exchange

The SIX® and MIEX® pilots sought to understand better ion exchange performance with the seasonably variable water quality at DLTWTF. The MIEX® pilot was run for a much shorter duration (October 4,2017-February 5, 2018). It is also important to note that the MIEX® pilot was run intermittently during that time. An overview of the differences between the SIX® and MIEX® process can be found in Section 1.2.1 Piloting Ion Exchange at DLTWTF - MIEX® and SIX®. A comparison summary is provided in Table 34.

Table 34 Ion Exchange Pilot Comparison: SIX® and MIEX®

	SIX® High TOC Low TOC		MIEX®		
			High TOC	Low TOC	
Salt Use	1545 lb	/ MG	650 lb/MG ⁽¹⁾		
Resin Fouling	none ob	none observed		hlorine	
TOC Removal ⁽²⁾ (%)	43% 65%		67%	55%	
Alkalinity Removal (%)	53% 42%		11%	4%	

Notes:

(1) MIEX® salt usage from MIEX® pilot report, assumed based on reference from IXOM, not collected pilot data.

(2) SIX® TOC removal from UVA data.

Resin regeneration frequency is much higher with SIX®, which results in the resin less heavily loaded. With lightly loaded resin, SIX® regeneration is quicker and uses lower brine concentration but removes other anions. The more frequent regeneration and less heavy loading results in higher salt use than MIEX®. A generic, off-the-shelf SBA resin was used during the SIX® pilot; MIEX® utilizes a proprietary magnetic resin with a particularly high affinity for NOM removal, resulting in higher TOC removal than SIX®. Due to the generic affinity properties of the SIX® resin along with less heavily loading of the resin, a significant amount of anions will be removed; this is evident in the alkalinity removal by SIX®.

It should be noted that some investigation of the potential for salt supply from the Tampa Bay Seawater Desalination project was investigated. Both the seawater feed and reverse osmosis streams were analyzed. Although the brine concentration covered an extensive range, the anticipated chloride concentration once optimized ranged from 14,700 to 18,350 mg/L. The chloride concentration of the seawater feed was 14,000 mg/L and the reverse osmosis concentrate was 36,000 mg/L. To provide 1,285 lbs per million gallons of water treated at 140 mgd, a flowrate of 328 gpm of reverse osmosis would be required and the net present value of the salt savings would be approximately \$31.7 million (assuming an average demand of 90 mgd and no salt cost escalation). The only anion in the seawater that could interfere with the anion exchange process is sulfate which is 4,800 mg/L in the reverse osmosis concentrate stream. The sulfate concentration in other SIX® projects has been as high as 7,500 mg/L, so problems with sulfate would not be anticipated. Additional water quality from these samples is included in Table 35.

Table 35 TBW Desal Feed and Concentrate Stream WQ

Analyte	Units	Desal Feed	Desal Concentrate
рН		7.9	7.7
Alkalinity	mg/L as CaCO₃	120	270
Total Hardness	mg/L as CaCO₃	4800	12000
TOC	mg/L	2.3	4.9
TDS	mg/L	25000	65000
Chloride	mg/L	14000	36000
Sulfate	mg/L	1800	4800
Bromide	mg/L	46	120
Sodium	mg/L	7700	18000
Calcium	mg/L	320	780

The TBW Desal plant typically operates six or seven months per year (early-December through early-June/July). While in operation, the plant typically processes 20 MGD, producing 10 MGD of concentrate (monthly average December 2021). Future flows at this plant are not expected to be reduced; if brine concentrate can be used for an IX regenerant, the desal plant could process more flow. Regardless of whether the plant is operating, raw seawater could still be sent to DLTWTF, offsetting some of the regenerant needs.

9.2 Coagulation

Coagulation will remain the second treatment process at DLTWTF through the MP improvements. As expected, with roughly half of the TOC removed by upstream ion exchange along with alkalinity removal (resulting in lower coagulation pHs), downsteam coagulation chemical usage is lower. A significant difference in SIX® and MIEX® coagulation was observed due to the lower alkalinity in the SIX® effluent. Currently, full-scale operations require sulfuric acid most of the year to achieve the necessary low coagulation pH to remove adequate TOC. With lower alkalinity in the SIX® effluent, coagulation pH was lower and more TOC was removed with less ferric sulfate than MIEX®. It is important to note that the SIX® pilot coagulation was operated to achieve neutral ZP. In contrast, the MIEX® pilot coagulation was operated to achieve color removal (same as full-scale). Table 36 provides a comparison summary of coagulation operations and performance during both the SIX® and MIEX® pilots, as well as full-scale performance during the SIX® pilot test period.

Table 36 Coagulation Comparison: Full-Scale, SIX®, and MIEX®

	SIX®		MIEX®		Full-Scale ⁽¹⁾	
	High TOC	Low TOC	High TOC	Low TOC	High TOC	Low TOC
Ferric Sulfate Dose (mg/L)	48	41	109	72	167	100
Sulfuric Acid Dose (mg/L)	N/A	N/A	N/A	N/A	15	85
Coagulation pH	4.32	6.43	6.5	7.2	4.47	4.81
Avg RW TOC (mg/L)	21	9.8	19	9.6	21	9.8
Avg FW TOC (mg/L)	1.8	1.2	2.9	2.0	3.0	2.4
TOC Removal (%)	74%	46%	54%	20%	87%	58%

Notes:

(1) Full-scale data collected during SIX® pilot.

9.3 Ozone

Ozone dose correlates strongly with pre-ozone TOC. With the lowest pre-ozone TOC, the SIX® pilot ozone resulted in the lowest ozone demand. Generally, ozone was operated full-scale to achieve 0.5 mg/L residual at 5.5 min CT; the SIX® pilot followed this closely, full-scale regularly must lower the ozone dose to avoid residual carry over to the filters. MIEX® ozone operations targeted a residual of 0.3 mg/L at 5.0 minute CT to match full-scale operations at that time and the ozone equipment was not as reliable as the ozone system used during the SIX® pilot. Table 37 provides a comparison summary of ozone operations during both the SIX® and MIEX® pilots, as well as full-scale performance during the SIX® pilot test period.

Table 37 Ozone Comparison: Full-Scale, SIX®, and MIEX®

	SIX®		MIE	X®	Full-Scale ⁽¹⁾	
	High TOC	Low TOC	High TOC	Low TOC	High TOC	Low TOC
Ozone Dose (mg/L) ⁽²⁾	2.54	1.60	4.8	1.78	4.30	2.37
Pre-Ozone TOC (mg/L)	2.89	1.84	3.87	2.44	4.11	3.28
O ₃ :TOC ratio ⁽³⁾	0.89	0.87	1.24	0.73	1.05	0.72
Caustic Dose (mg/L) ⁽⁴⁾	50	11	21	6	22	54

Notes:

- (1) Full-scale data collection during SIX® pilot.
- (2) Lower confidence in MIEX® ozone dose data.
- (3) Typical O₃:TOC for pre-ozonation is between 0.5-1.0 mg O₃ per mg of carbon
- (4) SIX® caustic dose adjusted for alkalinity control as shown in Table 47.

As previously described, with significant alkalinity removal from SIX®, the SIX® pilot did not always meet the finished WQ goal of 46 mg/L alkalinity during low RW alkalinity periods. Based on RTW findings, caustic and carbon dioxide doses were determined to achieve the goal.

9.4 Filters

Filter LRs during SIX® piloting were adjusted during the pilot to understand the limitations of the filter performance. Data presented in Table 38 for the SIX® pilot summarizes data from Filter 1 (control filter media), full-scale data is from Filter 24, MIEX® pilot filters were run similarly and the data averaged. Table 38 provides a comparison summary of filter operations and performance during both the SIX® and MIEX® pilots, as well as full-scale performance during the SIX® pilot test period. Compared with full-scale and MIEX pilot filter performance, SIX filter performance was significantly higher; the ability to operate filters at much higher loading rates is attributed to achieving reduced headloss with neutral coagulation ZP.

Table 38 Filter Comparison: Full-Scale, SIX®, and MIEX®(1)

	SIX®		MIEX®		Full-Scale	
	High TOC	Low TOC	High TOC	Low TOC	High TOC	Low TOC
Avg UFRV (gal/sq ft)	9208	11371	4411	3990	4040	4387
Avg LR (gpm/sq ft)	4.88	4.12	2.2	2.3-4.0	2.32	2.27
Max LR (gpm/sq ft)	6	4.6	2.2	4.0	2.71	2.85

Notes:

(1) Table data from the following: SIX® Filter 1 (control), full-scale Filter 24, and MIEX® range and average of the four filters.

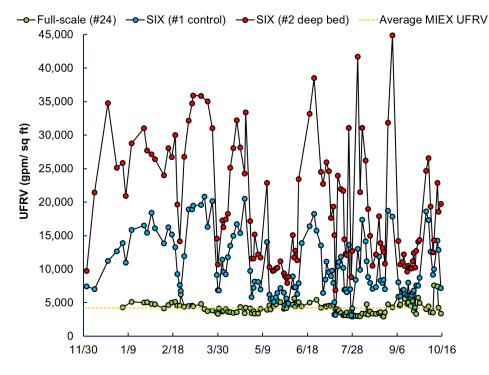


Figure 84 Full-Scale, SIX®, and MIEX® Pilot Filter UFRV Comparison

9.5 Water Quality

Full-scale water quality data is summarized from the SIX® pilot test dates. Three particular parameters highlight the major differences in performance between SIX®, MIEX®, and current full-scale operations: TOC, alkalinity, and chloride (a byproduct of ion exchange resin regeneration). A summary of these WQ parameters for RW and finished is provided in Table 39.

Table 39 WQ Comparison: Full-Scale, SIX®, and MIEX®(1)

WQ Parameter		SIX®		MIEX®		Full-Scale	
		High TOC	Low TOC	High TOC	Low TOC	High TOC	Low TOC
RW	Avg TOC	same as full-scale		19	9.6	21	9.8
	Avg Alkalinity			97	141	62	127
	Avg Chloride			17	21	17	22
	Avg pH			7.3	7.8	7.0	7.7
Finished	Avg TOC	1.8	1.2	2.9	2.0	3.0	2.4
	Avg Alkalinity	27	57	85	123	61	94
	Avg Chloride	73	100	44	46	4.6	4.4
	Avg pH	6.8	7.3	7.4	7.4	7.87	7.88

Notes:

(1) Table data is from the following: SIX® and full-scale data from 11/30/20-10/15/21 and MIEX® from 10/11/17-1/22/18.

9.5.1 TOC

Figure 85 provides an overview of finished water TOC with respect to the overall finished water goal of meeting below 2 mg/L. Generally, full-scale can only meet this goal during very low RW TOC periods. The MIEX® pilot struggled to achieve the goal during higher RW TOC periods, but was successful during low TOC conditions. With the SIX® pilot and targeting neutral ZP for coagulation, the 2 mg/L goal >95 percent of the time was met.

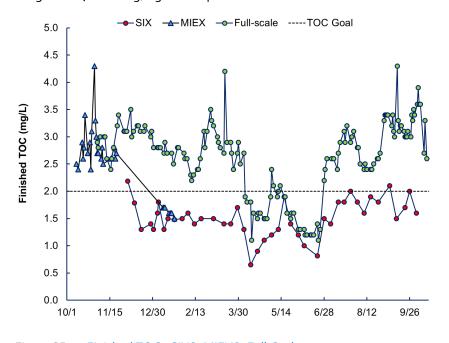


Figure 85 Finished TOC - SIX®, MIEX®, Full-Scale

9.5.2 Alkalinity

Figure 86 highlights another key difference between SIX®, MIEX®, and current full-scale concerning alkalinity. Alkalinity shifts significantly seasonally inversely to TOC; when TOC is low, alkalinity is high, and vice versa. With minimal alkalinity removal of MIEX® (due to the TOC-specific affinity of the resin and heavily loaded resin), finished alkalinity remained above the WQ goal of 46 mg/L as $CaCO_3$ throughout the testing. With SIX®, however, the generic SBA resin removes alkalinity (HCO $_3$ - and CO $_3$ -2-). During periods of low RW alkalinity it is anticipated that alkalinity, in the form of carbon dioxide and caustic, be added back into the sedimentation basin effluent to meet this goal and avoid any issues in the DS.

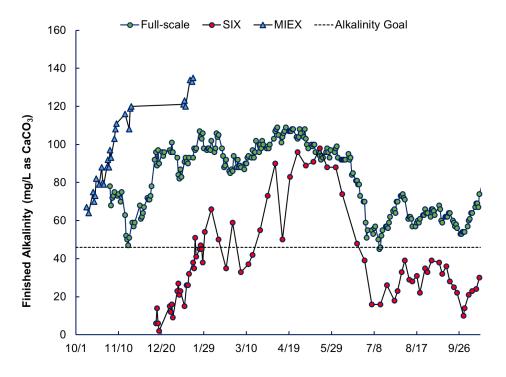


Figure 86 Finished Alkalinity - SIX®, MIEX®, Full-Scale

9.5.3 Chloride

Figure 87 highlights the significant increase in chloride that is expected of the finished WQ with a full-scale ion exchange technology installation. Due to the higher regeneration frequency, SIX® effluent chloride is higher than that of MIEX®. It is possible that full-scale SIX® chloride will be lower with further optimization. It is important to note; neither process resulted in chloride levels exceeding the MCL (250 mg/L).

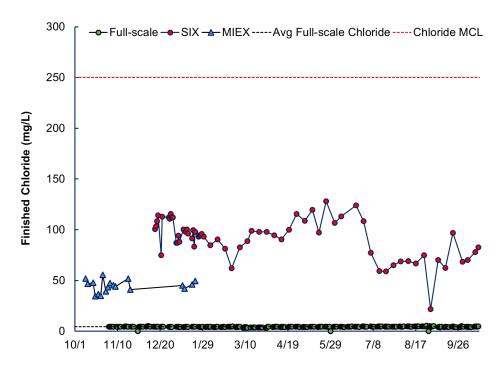


Figure 87 Finished Chloride - SIX®, MIEX®, Full-Scale

9.5.3.1 Chloride-to-Sulfate Mass Ratio (CSMR)

As previously discussed in the MIEX® Pilot Study Report, the CSMR will change with incorporating an ion exchange process at the DLTWTF. With the additional chloride byproduct of the ion exchange resin regeneration process and removal of sulfate, finished water quality will have higher CSMR. The CSMR is calculated as follows.

$$CSMR = \frac{[Cl^-]}{[SO_4^{2^-}]}$$
 Eq. 1

According to the EPA guidelines summarized in Table 40, CSMR and lead leaching is not a concern if there is no lead in the distribution system (DS). City staff has confirmed that there is no lead in the DS, and so there is no concern; however if lead pipe existed, there is a risk of contamination regarding the installation of an ion exchange process. Based on the finished WQ at both the SIX® and MIEX® pilot, CSMR ranges were calculated compared to full-scale and summarized in Table 41.

Table 40 EPA Recommended Level of Lead Concern Relative to CSMR of Water

CSMR	Concern Level
No lead solder or lead pipe in distribution	No Concern
CSMR < 0.2	No Concern
0.2 < CSMR <0.5	Significant Concern
CSMR > 0.5, and alkalinity <50 mg/L as CaCO₃	Serious Concern

Table 41 Summary of CSMR of Finished Water

	High TOC	Low TOC
Current Full-Scale ⁽¹⁾	1.1	0.88
SIX®	1.8	3.0
MIEX®	1.3	1.8

Notes:

It should be noted that the increase of chlorides combined with the drop in sulfate will increase the rate of corrosion of carbon steel and could result in potential attack of 304 stainless steel. Due to this potential, all stainless steel downstream of the SIX® process will standardize on 316 stainless steel as a part of future projecs.

⁽¹⁾ Note full-scale data from SIX® pilot time period. Sulfate data is needed to calculate this parameter. Will be updated in final draft.

Section 10

ECONOMIC ANALYSIS

With the results of this pilot study, additional economic analysis was required to update net present values and overall economic feasibility compared to existing operations (Refer to baseline Alternative 1B, DLTWTF Expansion without IX in the Original Master Plan completed in 2018) and SIX® operations. Capital costs for implementation of SIX® are greater than existing facility modifications; however, if chemical costs can be reduced enough, then the payback period could justify the capital expense. This section details the results of the economic analysis, including comparisons to existing operations and the MIEX® economic analysis completed in 2018.

Due to the significant seasonal variations in water quality and subsequent treatment and dosing scheme, the economic analysis conducted considered low and high TOC seasons and costs associated with each. High TOC season and low TOC season were quantified as any days where raw water TOC is consistently above 15 mg/L or below 15 mg/L, respectively. Full-scale and SIX® pilot-scale chemical doses were used in conjunction with the full-scale raw water flow rate of 80 mgd to calculate a pound per day chemical usage.

Using the assumed chemical costs below, an average total cost for chemicals per day could be determined (based on chemical costs reported by the City in 2018).

- Ferric sulfate: \$0.08 per pound.
- Lime: \$0.11 per pound.
- Caustic: \$0.26 per pound.
- Sulfuric Acid: \$0.06 per pound.
- Chlorine: \$0.26 per pound.
- Polymer: \$1.38 per pound.
- Chlorine: \$0.26 per pound.
- Ozone: \$0.84 per pound (including power).
- Carbon dioxide: \$0.06 per pound.
- Salt: \$0.06 per pound.

Costs for all other plant chemicals like fluoride, ammonia, and hydrogen peroxide were not included in this analysis since they are not expected to differ (on average) between SIX® pretreatment and the existing enhanced coagulation treatment processes.

Operating and maintenance costs were developed for the alternatives evaluation only and were based on knowledge of the DLTWTF's existing power and chemical costs in addition to annual costs incurred specific to each alternative. Solids handling was assumed to cost \$0.02 per pound of sludge produced and power was \$0.08 per kWh. It was assumed that chemicals and power costs will increase at a rate of 3 percent per year, while sludge disposal costs will increase at a rate of 6 percent per year due to the reduction in land availability as the population in the area grows. Operating costs were evaluated at average annual daily flows for each year based on the B&V 2018 Master Plan Report flow projections. Life cycle costs were developed to determine the 20-year and 30-year net present value of SIX®. The operating costs were discounted at a rate of 3 percent to net present value. A reoccurring yearly cost of \$200,000 per year was used for SIX® resin replacement.

10.1 Results

Table 42 shows the seasonal chemical costs in dollars per million gallons treated comparing existing full-scale operations to SIX® pilot operations. SIX® was a significantly lower cost for treatment during low TOC season, at \$153/MG compared to the existing system cost of \$271/MG, but surprisingly higher during high TOC season, \$263/MG versus \$222/MG, respectively (although anions in the water during high TOC season did drop and it is believed that salt use was not fully optimized during this time frame like it was for MIEX®). This difference is lessened when considering the SIX® pilot removed more TOC than full-scale, as shown in Table 43 and was able to meet the City's finished water quality goals (while current operation and the MIEX® pilot were not able to meet the goals). When normalized for the added TOC removal by SIX® (91 percent in high TOC season and 86 percent in low TOC season), the differential in high TOC season is reduced and benefit in low TOC season is increased. Over the course of the year, SIX® will have lower chemical and operational costs.

When comparing this to the previously completed MIEX® study, which resulted in a high TOC season cost of \$176/MG and low TOC cost of \$117/MG, the greatest differing factors are (1) higher salt usage in SIX®, (2) use of caustic for alkalinity recovery post coagulation. Salt use in the SIX® pilot was 4.7 times more than the assumed salt use in MIEX®. Salt and caustic in the SIX® pilot alone make up \$205/MG of the \$263/MG in high TOC and \$113/MG of the \$153/MG in the low TOC season. Non-cost benefits of alkalinity reduction have been summarized in previous sections of this report and options for salt costs reduction are detailed herein.

Table 42 Seasonal Total Chemical Costs

Operation ⁽¹⁾	Units	High TOC Season ⁽²⁾	Low TOC Season ⁽³⁾
· · · · · · · · · · · · · · · · · · ·	Onits	riigii 100 Seasoii	Low 10C 3ca3011
Existing, Full-Scale	\$/MG	\$222	\$271
SIX® Pilot	\$/MG	\$263	\$153
Differential		+\$41	-\$118
% Difference		18.5% increase	43.5% decrease

Notes:

- (1) During pilot operations from November 30, 2020 October 15, 2021.
- (2) High TOC occurred from December 15, 2020 July 1, 2021.
- (3) Low TOC season occurred from July 1, 2021 October 15, 2021.

Operation	Units	High TOC Season	Low TOC Season	
Existing, Full-Scale	%	84%	72%	TOC Removed
SIX® Pilot	%	91%	86%	TOC Removed
Differential Normalized		+\$22	-\$171	
% Difference Normalized		9.3% increase	52.9% decrease	

Table 43 Seasonal Differential Chemical Costs Normalized for TOC Removal

The seasonal unit costs developed in Table 42 were used in the overall economic and net present worth analysis. SIX® Power usage at a future average day flowrate of 90 mgd was provided and assumed to be 125 kWh per million gallons per day treated. This power includes instrument air, process water pumping, fresh brine pumping, waste brine pumping, resin pumping, and the SIX® blowers. Solids production with SIX® would be reduced by 63 percent which was accounted for in the capital and O&M costs.

Capital costs developed for the existing full-scale alternative (1B-Expanded Conventional Treatment) have been maintained and escalated (using ENR Indices = ~12.2 percent increase) from the Original Master Plan completed in 2018. Those costs include new plate settlers and flocculators, concrete construction, demolition, and repair (for expansion of basin treatment capacity to 100 mgd), expanded chemical systems, 48 mgd of new filters, and sludge processing facility upgrades. In summary, the capital cost of Alternative 1B from the original master plan is shown in Figure 88. This value was multiplied by the November 2021 ENR value of 12,467 and divided by the July 2018 ENR value of 11,116 to get to today's total capital cost dollar value of \$86M.

Table 5.7 Alternative 1B Capital Costs David L. Tippin Water Treatment Facility Master Plan City of Tampa						
Item	Cost					
Plate Settlers	\$5,400,000					
Flocculators	\$720,000					
Concrete Demolition	\$725,000					
Concrete	\$1,545,000					
Concrete Coating	\$1,907,000					
Chemical Systems Expansion	\$2,104,000					
New Filters (22 new, 48 mgd)	\$24,960,000					
Sludge Processing Facility Upgrades	\$1,656,000					
Site Work (5 percent)	\$1,950,000					
Piping, Valves, Appurtenances (15 percent)	\$5,850,000					
EI&C (20 percent)	\$7,800,000					
Total Direct Cos	\$54,617,000					
Contingency (25 percent)	\$13,660,000					
GC OH&P (12 percent)	\$6,555,000					
Sales Tax (7 percent)	\$1,910,000					
Tota	\$76,742,000					

Figure 88 Alternative 1B Capital Cost Assumption from Chapter 5 of 2018 Master Plan

Capital cost assumptions were presented in Task Order 2 - Master Plan Update, Workshop 3 and are shown in Figure 89. Cost of additional filters was not included in the SIX® capital costs since increased loading rates of 6-8 gpm/sqft, made possible by SIX®, do not require additional filtration capacity at the plant (existing operations and the MIEX® option would require additional filters). Additional capacity in the filter is still recommended; however, due to the increased ability to retire old filters, take filters out of service, and maintain filter effluent flumes without impacting DLTWTF production. It was assumed SIX® would require one less belt filter press at the solids handling facility, which was incorporated into the costs. SIX® capital costs including expanding the existing conventional basins to 100 mgd and maintaining the existing Actiflo® system, a 2021 cost of \$27M, for better comparison to the baseline Alternative 1B, for a total capital cost of \$122M for SIX® implementation.

Civil/Structural	\$22,960,000
	+ ,,
Subtotal	\$55,330,000
Contingency (30%)	\$16,599,000
Engineering (15%)	\$10,789,350
Linginiceting (1370)	\$10,709,330
GC O&HP (12%)	\$8,631,480
Total Construction	\$91,349,830
Resin (ODP)	\$4,500,000
itesiii (ODF)	φ4,500,000
Total	\$95,849,830

Figure 89 SIX® Capital Cost Assumptions from Master Plan Update

Table 44 shows the life cycle cost comparison when considering O&M costs. The existing conventional basin rehabilitation in 15 and 30 years was removed from the comparison since the SIX® process will still employ a low pH coagulation process. With an annual O&M savings of \$1.6M, the SIX® process has a little over a 20-year payback period and becomes more economically favorable after 30 years.

Table 44 Economic Analysis Summary (in millions)

	Baseline 1B Expansion of Conventional System	SIX®
Capital Cost	\$86.1	\$122
Annual O&M Cost	\$8.50	\$6.90
Net Present Value (20-Year)	\$256	\$263
Net Present Value (30-Year)	\$354	\$342

10.2 Sensitivity Analysis

As previously discussed, the major cost implication of SIX® is related to salt usage. If alternative or supplemental means for salt supply could be considered, the payback period and annual O&M savings with SIX® implementation could be significant. This sensitivity analysis considers the use of Tampa Bay Water's desalination concentrate water for 100 percent salt supply. The project would include a ~20 mile, 6 inch ductile pipeline from TBW's desalination facility to DLTWTF at an approximate capital cost of \$27M (assumed cost for urban construction). As shown in Table 45, elimination of the cost of purchased salt would result in an annual O&M savings of \$4.6M compared to existing full-scale operations. This would result in a payback period for the desal pipeline of less than 15 years.

Table 45 Economic Analysis Summary (in millions)

	Baseline 1B Expansion of Conventional System	SIX®	SIX® with Desal Salt Supply
Capital Cost	\$86.1	\$122	\$149
Annual O&M Cost	\$8.50	\$6.90	\$3.90
Net Present Value (20-Year)	\$256	\$263	\$231
Net Present Value (30-Year)	\$354	\$342	\$277

Section 11

REGULATORY

This section contains an overview of the collected pilot data to assist the regulators, including FDOH, in understanding the SIX® process and implications downstream, particularly the filters. In addition to a preliminary design report, manufacturer technical information and operations and maintenance requirements will be developed during the design phase of the SIX® project (to occur in 2022/2023). This section of the report will provide the supporting information as required by the F.A.C. stated below.

The City of Tampa Water Department falls under the Hillsborough County Florida Department of Health (FDOH) jurisdiction for matters related to enforcement of the Florida Administrative Code (F.A.C.) Chapter 62. The pilot study required the Florida Department of Environmental Protection (FDEP) form 62-555.520 and received a permit to operate under Permit Number 0168017-1608 WC/MM. The operation of the pilot study was conducted by and under the requirements of the permit.

Regarding full-scale implementation, the F.A.C. address design and construction of public water systems, per Rule 62-55.320(2)(a) through (c):

- (2) Innovative or Alternative Processes and Equipment. The Department encourages the development of new treatment processes and equipment. However, construction permits for innovative or alternative treatment processes or equipment (i.e., treatment processes or equipment not covered in the engineering references listed in Rule 62-555.330, F.A.C.) shall not be issued unless construction permit applicants include in the preliminary design report or design data accompanying their permit application supporting information demonstrating to the Department that the process or equipment is capable of consistently and reliably producing drinking water meeting applicable standards in Chapter 62-550, F.A.C., and requirements in this chapter. Supporting information shall include the following:
 - (a) The manufacturer's technical information;
- (b) Data and reports from full-scale or pilot-plant installations that are operated under conditions comparable to those for which the process or equipment is being proposed and that are operated for a sufficient time to verify satisfactory performance of the process or equipment; and,
 - (c) Operation and maintenance requirements and availability of technical support.

11.1 SIX®

TOC is on the list of target containments to be removed at DLTWTF since TOC is a precursor to regulated disinfection by-products (DBPs). The City strives to produce treated water with a low TOC content. Therefore, although only a specific TOC removal percentage ranging from 25 percent to 50 percent is regulated, the pilot study set forth an effluent TOC goal of 2.0 mg/L (in addition to overall removal percentages). As shown in Figure 90, the pilot resulted in consistently meeting this goal for over 10.5 month test period (November 30, 2020-October 15, 2021), which is a significant improvement compared to existing full-scale operations, as shown in green. The SIX® process removed 30-70 percent of the raw water TOC, as shown in Figure 91.

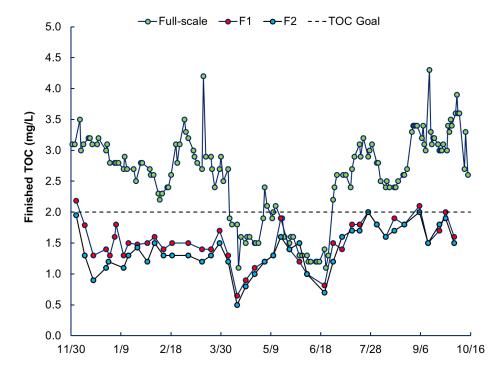


Figure 90 Finished TOC - Full-Scale and SIX® Pilot Filters 1 and 2

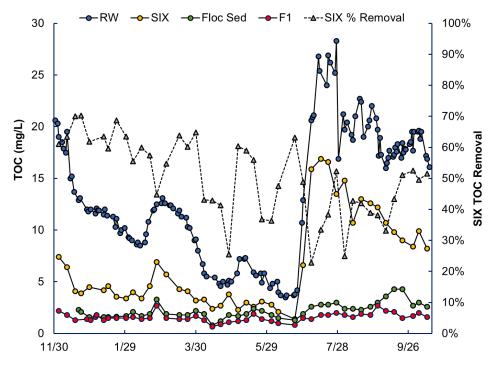


Figure 91 Pilot TOC and SIX® TOC Removal

The SIX® process offers significant savings on downstream coagulant use due to the lower alkalinity and TOC removal burden. Figure 92 shows full-scale chemical usage over the piloting period. Compared to Figure 93, the pilot chemical usage, there is an excellent reduction in ferric use. On average, the pilot-treated water required 20-40 percent of the ferric sulfate dose used by full-scale during the test period. Further, the pilot showed the elimination of the need for lime and sulfuric acid. Removing sulfuric acid from the DLTWTF will increase safety and reliability at the plant.

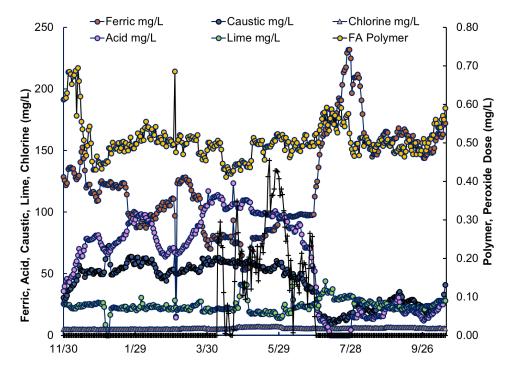


Figure 92 Full-Scale Chemical Dosing

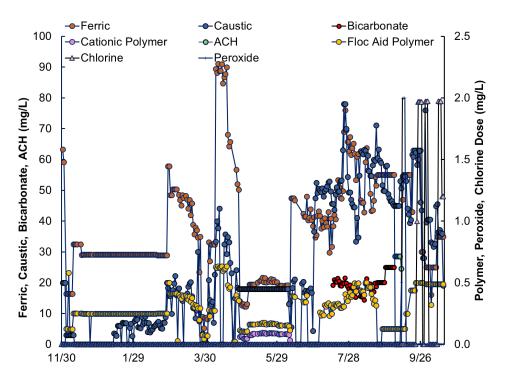


Figure 93 SIX® Pilot Chemical Dosing

Although beneficial to the coagulation process, SIX®'s ability to reduce alkalinity (between 30-70 percent), can impact treated water pH and stability. Therefore, to avoid corrosive waters and undesirable CCPP, carbon dioxide in combination with caustic will likely be required at certain times of the year. Carbon dioxide is a commonly employed chemical used at water treatment plants. To quantify the required doses during seasonal variations in water quality throughout the year, key pilot dates were looked at to bracket chemical requirements based on modeling of the chemistry (RTW model).

Table 46 summarized those findings based on anticipated ranges of RW alkalinity.

Table 46 RTW Findings for Alkalinity Control Based on Pilot Data

	Pilot Data								RTW Finding	gs		
Pilot Data Date	RW Alk (mg/L as CaCO ₃)	RW TDS (mg/L)	рН	Alkalinity (mg/L as CaCO₃)	Ca Hardness (mg/L as CaCO₃)	Cl (mg/L)	SO4 (mg/L)	CCPP (mg/L) Target 4-10	рН	Carbon Dioxide Dose (mg/L)	Caustic Dose (mg/L)	Resulting Alkalinity (mg/L as CaCO ₃)
2/4/2021	131	280	7.66	92	163	88	32.1	6.71	8	0	1	93
12/4/2020	85	200	7	21	108	94.5	15	2.16	8.41	18	20	46
4/7/2021	153	280	7.9	124	185	91	35	12.56	7.51	0	0	124
6/25/2021	105	230	7.45	58	160	110	45.4	4	8.21	0	3	62
6/28/2021	98	180	7.4	55	96	110	33.1	1.45	8.12	0	3	80
7/13/2021	50	150	6.8	11	80	59	35.8	2.23	8.5	27	28	46
Pilot Average	105	217	7	58.6	137	92.3	32.6	2.66	8	0	8	69

•	•		
	RW Alk < 100	RW Alk < 85	RW Alk < 65
Carbon Dioxide Dose (mg/L)	0	18	27
Caustic Dose (mg/L)	3	20	28
Anticipated FW pH	8.2	8.4	8.5
Approx. Number of Davs	20	58	72

Table 47 Summary of RTW Dose Requirements for Corrosion Control

The pilot study also showed a favorable impact on the ozone demand with SIX® in place, with lower ozone doses required by SIX® treated water, as shown in Figure 94.

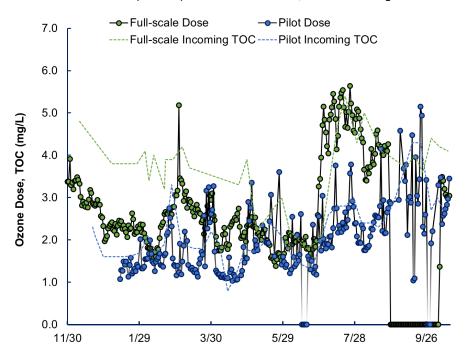


Figure 94 Full-Scale and SIX® Ozone Dose and Pre-Ozone TOC

The SIX® Process produces a waste brine solution that requires disposal. During the pilot, the volume of brine produced was inconsequential to full-scale and sent to the head of the plant. The waste brine consists of organics, sodium, and chloride but did not adversely impact full-scale operations during the pilot period. For full-scale implementation at DLTWTF, the volume of brine will be significant enough that it cannot be recycled to the head of the plant. Instead, the waste brine will be sent to deep well injection for disposal.

Currently, the City is in the process of applying for a Class I Injection Well with a permit application being submitted to FDEP via form 62-528.900(1) to permit three deep injection wells to be located at the DLTWTF facility. The full-scale SIX® system will include waste brine pumps that will serve the deep injection wells. Data from three waste brine samples over the pilot period and resulting water quality information are shown in Table 48 and Table 49. The requirements for permitting and constructing the wells will be followed in accordance with the F.A.C. and under the jurisdiction of FDEP.

Table 48 General WQ of SIX® Brine Waste

Sample	Date Sampled	pH (SU)	Conductivity (uS/cm)	Alkalinity (mg/L as CaCO₃)	TOC (mg/L)	TDS (mg/L)	Nitrate (mg/L - N)	Chloride (mg/L)	Sulfate (mg/L)	Bicarb (mg/L)
Brine Waste	1/25/21	8.7	26,100	760	350	20,000	2.2	6,000	2,000	920
Brine Waste	9/16/21	8.6	NT	2,700	730	13,000	3.7	4,200	2,600	NT
Caustic Brine Waste	10/1/2021	10	NT	NT	NT	110,000	NT	50,000	NT	NT

Notes:

(1) NT= not tested.

Additional WQ Data of SIX® Brine Waste Table 49

Analyte	Units	Brine Waste (1/25/21)	Brine Waste (9/16/21)
Total Hardness	mg/L as CaCO₃	NT	47
Nitrite	mg/L -N	NT	0.62
TKN	mg/L - N	NT	21
Orthophosphate	mg/L - P	5.6	NT
Total Phosphate	mg/L - P	5.1	NT
Total P	mg/L - P	NT	7.1
Bromate	mg/L	NT	1
Bromide	ug/L	3,100	2,100
Silica	mg/L	4.4	7.7
Sodium	mg/L	6,800	4,000
Calcium	mg/L	36	17
Aluminum	mg/L	NT	2,000
Iron	mg/L	1	9.9
Magnesium	mg/L	3	1.2
Manganese	ug/L	NT	200
Fluoride	mg/L	4.3	7
Sulfide	mg/L	NT	0.25
Potassium	mg/L	8.5	10
Sp Conductance	umho/cm	NT	19,000
Gross Alpha	pCi/L	NT	3
Radium 226	pCi/L	NT	1
Radium 228	pCi/L	NT	1
Notes: (1) NT= Not tested.			

11.2 Filters

The introduction of SIX® and downstream processes will change the speciation and concentration of organic material in the water so that it will affect the biology in the biological filters. This was observed during the pilot study and is expected to occur full scale. The effect of this destabilization may be a change in biological activity that allows for modifications to system operations in combination with alternate filter media configurations that will reduce headloss in the filters. Current full-scale operations are limited by the headloss of the existing filters, which impacts plant capacity and efficiency. These headloss limitations may be caused by media configuration, the biofiltration process, and/or the backwash process. Implementation of the SIX® process is expected to positively impact the DLTWTF filters by increased run times and the ability to increase filter loading rates.

Pilot loading rates (LR) began within the 10 State Standards recommended range of 2.0-4.0 gpm/sq ft aside from Filter 2, a deep bed and this filter started at a LR of 6.0 gpm/sq ft. It was only after an initial satisfactory performance that filter LR was increased to determine ranges of operation and sensitivity of turbidity removal and headloss with loading rate.

Pilot Filter 1 was used as a control for the existing full-scale media configuration. The pilot study results showed successful operation at 6 gpm/sqft; therefore, once SIX® is implemented it will be requested that the full-scale filters be allowed to operate at a maximum filter loading rate of 6 gpm/sqft. A summary of Pilot Filter 1 performance at the various loading rates tested is provided in Figure 95.

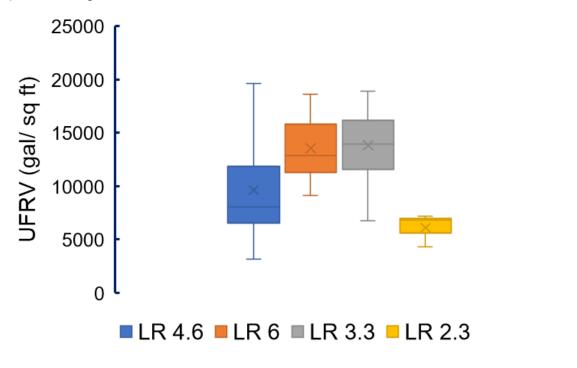


Figure 95 Filter 1 UFRV Performance vs. Loading Rate

Further, the City is in the process of designing six new dual-bay filters at the northwest end of the site. Pilot Filter 2 was determined to be the most appropriate filter configuration that the new filters should be designed to based on outstanding performance compared to the other pilot filters. In this case, the new filters would be operated at a maximum filter loading rate of 8 gpm/sqft in full-scale application (after SIX® process commissioning) based on the pilot study results. Details on Pilot Filter 1 and 2 are shown in Table 50 and Table 51. A summary of Pilot Filter 2 performance at the various loading rates tested is provided in Figure 96.

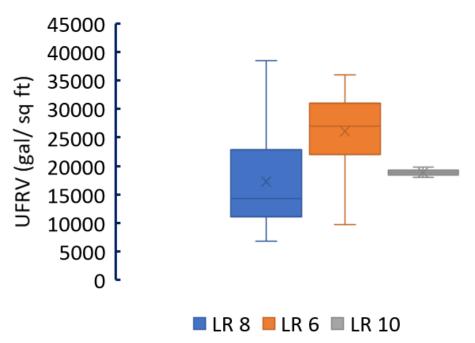


Figure 96 Filter 2 UFRV Performance vs. Loading Rate

Table 50 Existing Filter Control (Pilot Filter 1) Media Configuration and LR Request

Pilot Filter 1 "Existing Filter Control"		
GAC Depth (in)	22	
Sand Depth (in)	12	
ES, GAC (mm)	0.90	
ES, Sand (mm)	0.50	
L/D	1230	
Allowable Headloss (ft)	6	
Tested Loading Rates (gpm/sq ft) 3.25-8		
Average Filter Run Turbidity (NTU)	0.02	
Loading Rate Request (gpm/sq ft)	6	

Table 51 New Filter Design (Pilot Filter 2) Media Configuration and LR Request

Pilot Filter 2 "New Filter"		
GAC Depth (in)	63	
Sand Depth (in)	9	
ES, GAC (mm)	1.40	
ES, Sand (mm)	0.65	
L/D	1495	
Allowable Headloss (ft)	12	
Tested Loading Rates (gpm/sq ft)	6-10	
Average Filter Run Turbidity (NTU)	0.02	
Loading Rate Request (gpm/sq ft)	8	

Section 12

CONCLUSION

Through this pilot test, the following global results were achieved and herein described:

- 1. Characterize treatment performance over a range of raw water quality conditions.
- 2. Confirm that the selected treatment processes can reliably and continuously produce treated water that meets the City's finished water quality goals under the range of raw water quality conditions experienced from the Hillsborough River/ASR wells.
- 3. Establish preliminary operating criteria and range of chemical doses and waste streams that can be used to estimate project life cycle costs.

Appendix A TEST EQUIPMENT

1.1 SIX

SIX skid specifications are summarized in Table 1.

Table 1 SIX Pilot Skid Specifications

Parameter	Value	
Supplier	Ramboll	
Assembled Dimensions	19′ H x 16′ W x 20′ L	
Maximum Flow Rate	50 gpm	
Resin Regen Capacity	1700 gpd	
Contactor Detention Time (at 30 gpm flow)	20-30 min	
Feed Tank Volume	264 gal (1000 L)	
Contactor Volume	924 gal (3500 L)	
Lamella Settler Hopper Volume	37 gal (140 L)	
Regeneration Tank Volume	37 gal (140 L)	
Fresh Resin Tank Volume	74 gal (360 L)	

1.2 MRI Floc/Sed

The specifications for the floc/sed skid are shown in Table 2.

Table 2 Floc/Sed Pilot Skid Specifications

Parameter	Value
Manufacturer	MRI, Inc.
Assembled Dimensions	8′ H x 7′ W x 18′ L
Maximum Flow Rate	110 gpm
Rapid Mix	Komax in-line Mixer
3-stage Flocculator	70-20 GT
Flocculation time at 50 gpm	38 minutes
Available Settling Plates (quantity/size each)	28 @ 4.5' x 4.5'
Number of plates at 0.3 gpm/sq ft plate loading rate (at 80% efficiency) at 50 gpm	18
Available Chemical Feed Pumps (quantity/size)	5 @ 0.01 - 21.7 gpd
Sludge Collector Blowdown Rate	26 gpm
Notes: Not all settling plates were used. A summary of plate LR is provide	d in section 1.2.1.2 below.

1.2.1 Coagulation/Flocculation/Sedimentation

1.2.1.1 Flocculation mixing

A mixing speed of 6 RPM was selected for the flocculator. Corresponding G values for mixing in each of the three stages is summarized in Table 3.

Table 3 G Values for MRI Flocculator

		G (s-1)	
RPM	1st stage	2nd stage	3rd stage
8	52.6	31.5	16.5
7	43.4	26.0	13.6
6	34.2	20.5	10.7
5.6	30.0	18.1	9.5

1.2.1.2 Sedimentation - Plate Loading Rarte

The MRI FlocSed unit used for this pilot is sized to 110 gpm and has a series of plates for settling. To achieve adequate settling and minimal solids carry-over at the operating flow of 30 gpm, additional settling plates were plugged. A summary of this is provided in Table 4 below.

Table 4 MRI Plate Loading Rate Details

	Start of pilot- Jan 28	Jan 28 - End of pilot
Floc tank (gal)	1908	1908
Flow (gpm)	30	30
Floc HRT (min)	63.6	63.6
Effective Area (ft²)	158.0	176.5
Settling Area (ft²/plate)	9.3	9.3
# of plates	17	19
Plate LR (gpm/ft²)	0.19	0.17

1.3 Ozone

The specifications for the unit are shown in Table 5. The feed flow is controlled automatically. Contact chambers have 25 volumetrically-spaced ports for sampling dissolved ozone. The ozone generator is air-cooled with an integral oxygen concentrator for creating ozone from ambient air and shuts down automatically if a leak is detected.

Table 5 Ozone Pilot Skid Specifications

Parameter	Value
Manufacturer	Intuitech
Assembled Dimensions	75.5" H × 50" W × 122" L
Flow Rate Range, per contactor	2.0-9.0 gpm
Contactors	2 @ 133 gal
Flowrate through one contactor at 21.4 minutes (equivalent to full plant flow)	6.2 gpm
Ozone Delivery Range	0.1-6.5 g/h
Ozone Dose Range for one contactor at 6.3 gpm	0.07-4.5 mg/L
Chemical Feed Pumps Range	3 @ 0.01 - 21.7 gpd
Minimum flowrate required for filters	3.36 gpm

1.4 Biofiltration

The filter skid used was provided by Carollo and manufactured by Intuitech. Each filter operates using automatic PID flow control. The module can be operated as four independent filters, or two sets of two filters in series. The air scour and backwash systems are shared by all filters and utilize automatic PID flow control. Chemical feed pumps are flow paced with direct entry of chemical dosage. Each chemical pump can be selectively paced to any of the filter feed flows, the combined filter feed flow, or the backwash flow.

Backwashing is initiated manually by an operator in the manual mode, or on runtime, run volume, head loss, or effluent turbidity in the automatic mode (it is anticipated that head loss will control on this project based on historical plant operations). Only one filter may be backwashed at a time. The equipment is monitored and controlled by an HMI that communicates with the on-board PLC, which monitors and controls various instruments and components. The specifications for the skid are shown in Table 6.

Table 6 Biofiltration Pilot Skid Specifications

Parameter	Value
Manufacturer	Intuitech
Assembled Dimensions	136" H x 146" W x 50" D
Flow Rate	0 - 12.0 gpm
Filters	4 @ 6" internal diameter
Maximum Media Depth	72"
Filtration Rate Range	2.55 - 15.3 gpm/sq ft
Backwash Rate Range	5.10 - 30.6 gpm/sq ft
Backwash Tank Capacity	150 gal
Air Scour Rate Range	2.55 - 10.2 scfm/sq ft
Chemical Feed Pumps Range	5 @ 0.01 - 21.7 gpd
Chemical Feed Tanks	5 @ 4 gal

1.4.1 BW protocol

Filter BW protocols began with a FTW regime, summarized in Table 7. On 9/5/21, all four filter BW protocols were changed to follow a RTW regime, summarized in Table 8.

Table 7 FTW (Filter to Waste) Regime (start of pilot – 9/5/21)

Step	Filter 1	Filter 2	Filter 3	Filter 4
Drain Level	34 inches	6 inch	0 inch	0 inch
Air Scour	1 scfm for 90 sec	0	0	0
Air Scour/BW	1.1 gpm/0.5 scfm	1.88 gpm/0.8 scfm	1.88 gpm/0.8 scfm	1.61 gpm/0.8 scfm
BW1	1.1 gpm for 30	1.1 gpm for 30	1.1 gpm for 30	1.1 gpm for 30
	sec	sec	sec	sec
BW 2	3.53 gpm for 330	4.57 gpm for 420	4.22 gpm for 420	3.52 gpm for 420
	sec	sec	sec	sec
BW 3	1.1 gpm for 30	1.1 gpm for 30	1.1 gpm for 30	1.1 gpm for 30
	sec	sec	sec	sec
FTW	25 min or 0.2	13.8 min or 0.2	20.7 min or 0.2	22.4 min or 0.2
	NTU	NTU	NTU	NTU

Table 8 RTW (Rinse to Waste) Regime (as of 9/5/21)

Step	Filter 1	Filter 2	Filter 3	Filter 4
Drain level	34 inches	6 inch	0 inch	0 inch
Air Scour	1 scfm for 90 sec	0	0	0
Air Scour/BW	1.1 gpm/0.5 scfm	1.88 gpm/0.8 scfm	1.88 gpm/0.8 scfm	1.61 gpm/0.8 scfm
BW1	1.1 gpm for 30 sec			
BW 2	3.53 gpm for 330 sec	4.57 gpm for 420 sec	4.22 gpm for 420 sec	3.52 gpm for 420 sec
RTW	1.0 gpm for 960 sec			

1.4.2 Summary of Virgin GAC Exhaustion at Start of Pilot

During pilot commissioning, raw water was fed to the filter columns in order to exhaust adsorptive capacity of the virgin GAC in Filters 2-4. Filter 1 was loaded with exhausted media from the full-scale filter #24. Pilot Filter 1 was used as a control to gauge the exhaustion of the virgin GAC. After the first week of exhaustion, UVT % removal was still higher in Filters 2-4, compared to Filter 1, suggesting that the adsorptive capacity was not fully exhausted (Figure 1 and Figure 2). The subsequent week, while getting the ozone pilot commissioned, it can be noted that UVT % removal was about the same for all four filters (12/10) (Figure 3 and Figure 4).

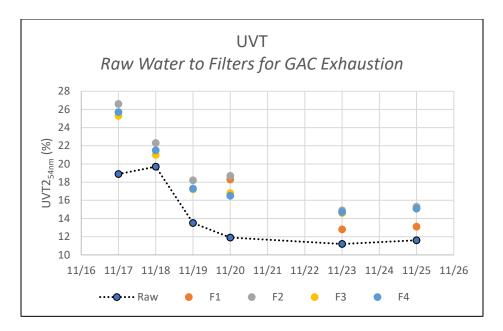


Figure 1 Filter Virgin GAC Exhaustion Pre-Pilot - UVT

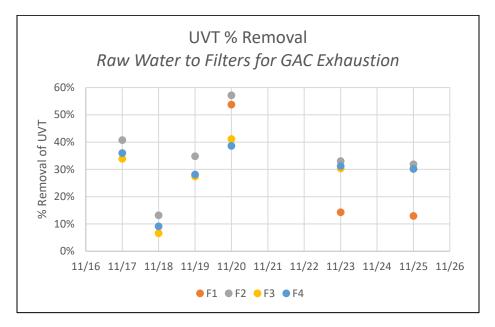


Figure 2 Filter Virgin GAC Exhaustion Pre-Pilot – UVT % Removal

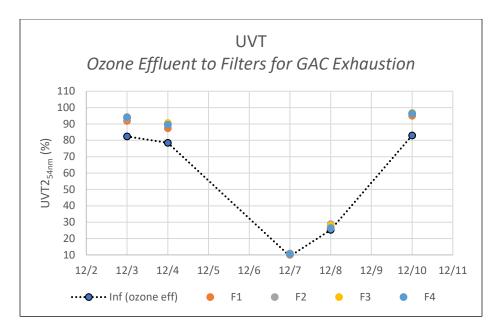


Figure 3 Filter GAC UVT – Pilot first two weeks

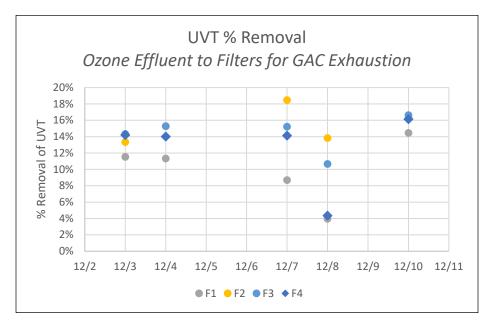


Figure 4 Filter GAC UVT % Removal– Pilot first two weeks

1.4.3 Pilot Filter 1 GAC Sieve Analysis and Abrasion Testing (Full-scale Filter #24)

At the end of the pilot test period, pilot filter 1 GAC was sampled and analyzed. The original GAC media loaded was an F830 media (X mm). Media size and abrasion resistance was performed per ASTM C136 and ANSI*AWWA B604-12. The same tests were run on a virgin Calgon F820 GAC for comparison. Test results are summarized below in Table 9. Figure 5 shows a visual of the resulting sieve analyses from this testing. It is recommended that GAC media retain 75% of original media size post-abrasion testing; adhering to this GAC spec for future filter media would help to avoid media attrition, washout, headloss due to excess fines, and replacement frequency.

Table 9 GAC Sieve Analysis and Abrasion Test Results

	COT GAC	Calgon F820
D ₁₀ (mm) ⁽¹⁾	1.05	1.01
Post- Abrasion D ₁₀ (mm)	0.5	0.96
% Retention (2)	58%	97%

Notes:

- (1) D_{10} is media size where 10% is retained (90% passing).
- (2) % Retention = Final D_{avg} / original D_{avg}.



Figure 5 GAC media samples post-sieve analysis before and after abrasion testing.

1.4.4 Pilot Testing Location, Supply Source, and Pilot Waste

At the DLTWTF, raw water is pumped from the Hillsborough River to the existing conventional basins 5 – 8 as well as to the Actiflo® basins 1 and 2. The pilot-testing equipment will be located at Building #9, also called the Parts Building, and noted in Figure 6. For the pilot study, water was supplied directly from the Actiflo® raw water pipe (Figure 8) via an existing two inch supply tap (Figure 9), prior to any chemical addition, but after raw water screening, and is highlighted in Figure 7.

Treated water from the pilot system as well as waste streams for all treatment trains was collected and pumped to Junction Box 4, highlighted in Figure 7, which directs flows back to the plant intake. Figure 12 and Figure 13 provide closer visuals of Junction Box #4.

Figure 6 DLTWTF and Hillsborough River, Tampa, FL.

Figure 7 DLTWTF Pilot Location, RW supply, and Waste Discharge Locations

Figure 8 DLTWTF Actiflo® Piping

Figure 9 DLTWTF Pilot Raw Water Tap

Figure 10 DLTWTF Pilot Raw Water
Pump and Pre-filtration Setup

Figure 11 DLTWTF Pilot Waste/Overflow Collection Tank.
Sump pumps sending water to Junction Box #4.

Figure 12 DLTWTF Junction Box #4

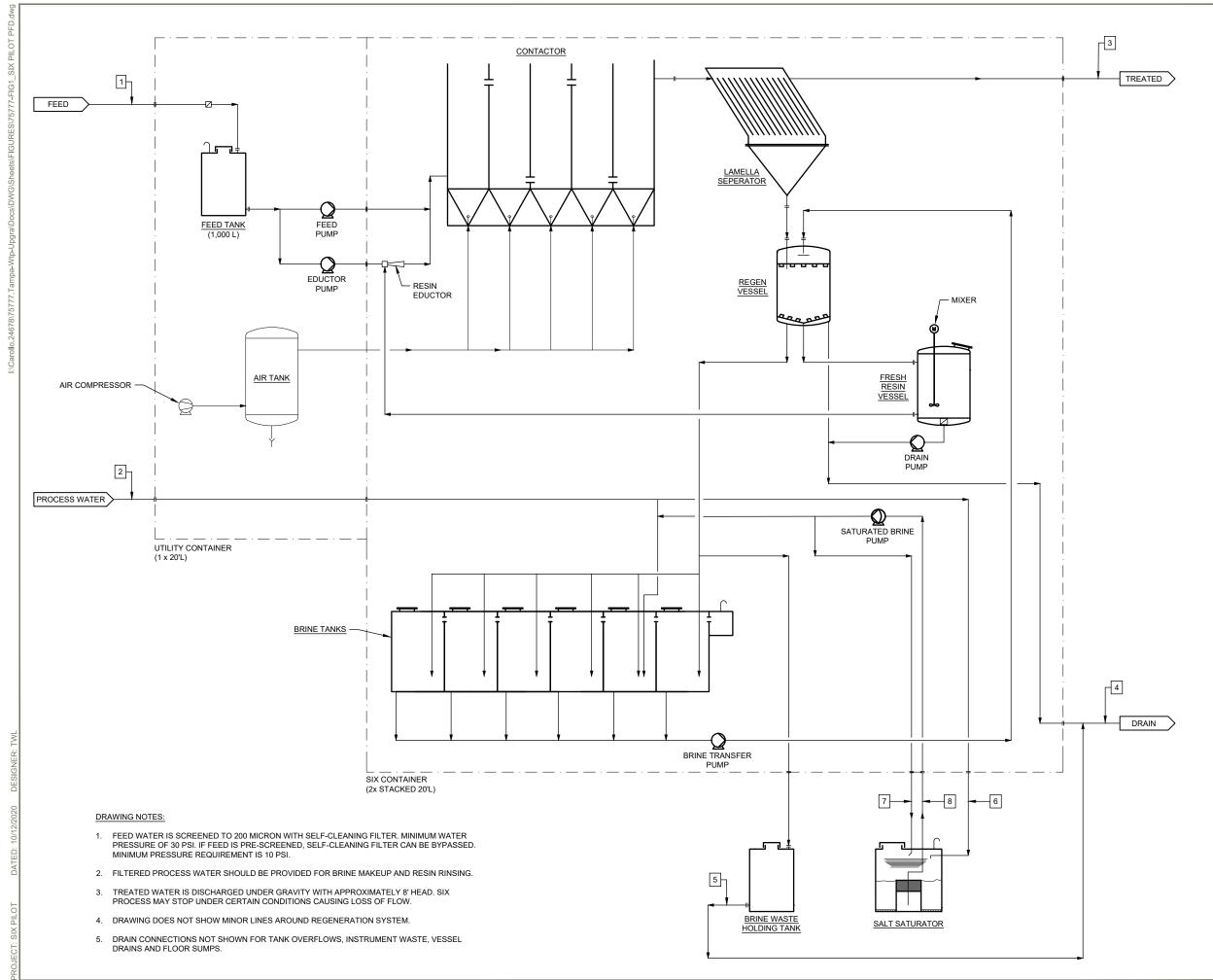


Figure 13 DLTWTF Junction Box #4 (internal)

SKID MANUALS

- 1.1. SIX- Ramboll
- 1.2. Floc/Sed- MRI
- 1.3. Ozone Intuitech
- 1.4. Filters Intuitech

SIX - RAMBOLL

LEGEND

- 1 RAW WATER INLET (2")
- 2 SERVICE WATER
- 3 TREATED WATER (4")
- 4 DRAIN (4")

8

- 5 BRINE WASTE DRAIN (4")
- 6 SALT SATURATOR MAKEUP (3/4" PROCESS WATER)
- 7 CONCENTRATED BRINE RETURN (3/4")
 - CONCENTRATED BRINE SUPPLY (3/4")

MAIN PLANT ITEMS			
TAG	TAG NAME		NOTES
INT_OT_51	FEED TANK	1 m3	ATMOSPHERIC
IW_OR_0x	CONTACTOR	3.5 m3	5x CELLS
LS_OS_51	LAMELLA SEPARATOR	140 L (CONE)	
HG_OV_51	REGEN VESSEL	140 L	
HG_OV_53	FRESH RESIN VESSEL	360 L	
RB_OV_xx	BRINE TANKS	400 L	6x CELLS
RB_OT_10	SALT SATURATOR	1000 kg SALT	
IL_T_12	AIR TANK	500 L	

MECHANICAL			
TAG	NAME	CAPACITY	POWER
IW_OP_10	FEED PUMP	3 - 12 m3/h	0.75 kW
IW_OP_20	EDUCTOR PUMP	1 m3/h	0.37 kW
IW_OJ_10	RESIN EDUCTOR		
HG_OP_10	DRAIN PUMP	1 m3/h	0.37 kW
HG_OM_10	MIXER		0.25 kW
RB_OP_20	SATURATED BRINE PUMP	300 L/h	0.37 kW
RB_OP_10	BRINE TRANSFER PUMP	0.5 - 2 m3/h	0.75 kW
IL_OK_10	AIR COMPRESSOR	12 cfm	3.7 kW

PROCESS FLOW DIAGRAM SIX PILOT PLANT

DAVID L. TIPPIN WTP UPGRADE

7125 N. 30th STREET TAMPA, FLORIDA 33610

FIGURE 1

RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY

FLOC/SED - MRI

Meurer Research, Inc.

16133 W 45th Drive Golden, Colorado 80403 Tel (303) 279-8373 Fax (303) 279-8429

Plate Settler Pilot Pre-Treatment Package

MRI Contact: Dan May

Phone: (720) 287-5606

Meurer Research, Inc. Plate Settler Pilot Unit Protocol

All enclosed material is property of Meurer Research, Inc. This material is provided exclusively to the addressee for the purpose of evaluating the performance of MRI plate settlers in said application.

Reproduction or use of this material without the consent of Meurer Research, Inc. is strictly prohibited.

Table of Contents

1.0	INTRODUCTION	4
2.0	CHEMICAL FEED	4
3.0	IN-LINE MIXER	4
4.0	FLOCCULATOR	4
5.0	INLET DIFFUSERS	5
6.0	PLATE SETTLERS	5
7.0	EFFLUENT TROUGHS	7
8.0	HOSELESS SLUDGE COLLECTOR	8
8.1	HOSELESS SLUDGE COLLECTOR CONTROLS	9
9.0	OPERATION OF PILOT UNIT	17
9.1	CHEMICAL FEED	17
9.2	FLOCCULATOR	18
9.3	PLATE SETTLERS	20
9.4	HOSELESS SLUDGE COLLECTOR	20
10.0	MAINTENANCE	21
11.0	PREPARATION FOR SHIPPING	21

1.0 Introduction

The Meurer Research, Inc. Plate Settler Pilot Unit is a self-contained plate settler unit complete with inline mixer, 3-stage flocculator, Inlet Diffusers, plate settlers and sludge removal. Each unit is provided for the use of the client to establish the feasibility of plate settlers as an effective settling enhancement for their particular application.

2.0 Chemical Feed

The chemical feed may be provided by the plant, which is established and in place.

Should experimentation with chemicals be in the scope of the pilot test, MRI will provide up to two (2) chemical feed pumps of the peristaltic type, two (2) 35 gallon mixing tanks can be provided as well. (See the chemical feed pump manual at the end of this document)

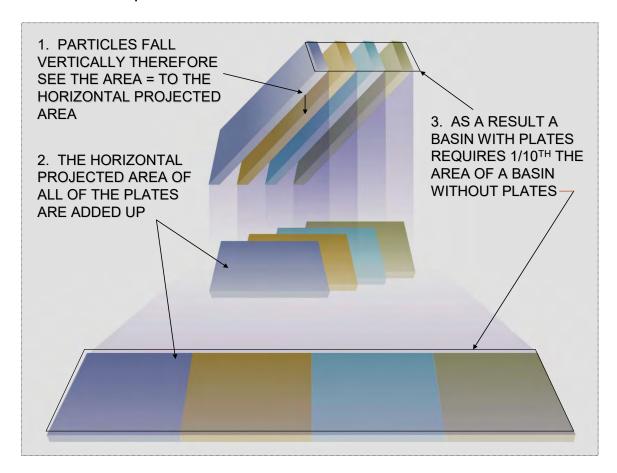
3.0 In Line Mixer

With the Plate Settler Pilot Unit MRI will provide a Komax in line mixer in place of the rapid mix. The mixer will be a 3" mixer incorporated into the 4 inch inlet line. No adjustments are required for the in-line mixer. (See the attached spec sheets for the Komax mixer at the end of this document).

4.0 Three Stage Flocculator

Each Plate Settler Pilot Unit will include a three stage flocculator. The stages are engineered to produce from 70 to 20 GT. Each set of flocculator paddles are attached to a common shaft. The flocculator drive has a 1 HP 90 VDC variable speed motor.

Each stage of the flocculator is separated by a stainless steel baffle wall with openings that create an over and under flow pattern.

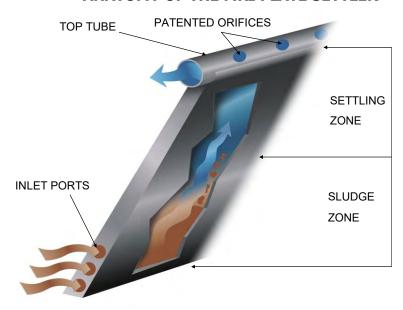


5.0 Inlet Diffusers

As the flow exits the flocculator and enters the settling area it passes though an Inlet Diffuser which slows the velocity to <.5 fps and aligns the flow with the feed channels on either side of the plate settlers. The Inlet Diffusers are designed to allow the incoming flow to gently rotate as it homogenizes into the settling area maintaining the floc structure.

6.0 Plate Settlers

The plate settlers are positioned on 55⁰ and spaced 2 inches apart. The settled solids see the projected area of each plate as a settling surface. The projected areas overlap which results in higher flows in a smaller footprint.

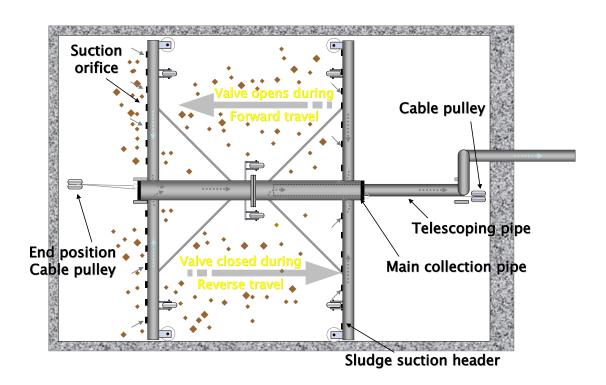

The plate settlers consist of individual plates set two inches apart forming a plate pack. Each plate is equipped with a top tube that strengthens the plate, distributes the flow and with adjacent top tubes forms a grating that can be walked on and easily cleaned.

Each plate is equipped with inlet ports located at the bottom of the plate on each side where the flow enters the plate and then travels up to the top tube. The flow exits between the plates and then enters the top tube through the orifices that removes the flow evenly across the entire width of the plate.

ANATOMY OF THE MRI PLATE SETTLER

7.0 Effluent Troughs

The effluent troughs are located adjacent to the plate settlers on both sides. Each trough is equipped with an effluent weir. The flow exits the top tubes and flows over the effluent weirs.


8.0 Sludge Collector

Each pilot unit is equipped with an automated sludge collector that removes the settled solids from the settling area.

When called on by the control panel the Hoseless Sludge Collector will make one pass across the settling area floor removing all settled solids.

The underflow is discharged through the end of the pilot unit which is equipped with a sludge valve that starts and stops the flow. The flow rate is controlled by a 2" manual butterfly valve. The normal flow setting for the Sludge collector is between 25-30 GPM. This will be calibrated by a 5 gallon bucket test during start-up.

Hoseless Cable-Vac™ System

8.1 HOSELESS SLUDGE COLLECTOR CONTROLS

SEQUENCE OF OPERATION

FOR COLLECTION (HCV) SYSTEM (INCLUDES COLLECTOR AND VALVE ONLY)

16133 West 45th Drive. Golden, CO 80403 Phone: 303-279-8373

Fax: 303-279-8429

Hose-Less Cable-Vac[™] and Control Panel Operation MRI Pilot Unit: MRI-1502 (HCV Sludge Collector and Valve Only)

Control of the Sludge Collector unit (collector and valve) will be from the Local Control Panel (LCP-MRI-01) located on the side of the packaged pilot-unit tank. Operation of the Sludge Collector unit will either be through automated PLC sequencing, the Plant Control System (SCADA), the HMI Touch Screen Terminal located on the face of the Local Panel enclosure door, or the VFD Keypad and drive potentiometer located inside the Local Panel. These controls will allow the operator to control the following parameters, and will display the following information.

Remote/Auto & Local/Auto Operation—

In **REMOTE/AUTO** mode (system LOR switch in remote and unit HOA switch in auto), a call to run will allow the sludge collector unit to run a normal sequence of operation.

Which is as follows:

When the sludge collector unit is called to run, the sludge valve will open. Once the sludge valve has been proven fully open, the collector unit will run to the far end of the basin, collecting sludge along the way. When the collector has reached its end limit position (opposite end of the drive in most cases), the sludge valve will remain open for 60-120 seconds (field adjustable) and then close. This is to assure that no sludge build-up will occur at the end, as well as flushing out the collector system. The collector knows which end it has reached due to inductive proximity sensors located on the drive unit. The sensors sense the cable position on the grooved drum pre-set by our Field Engineers. Once the valve has been proven fully closed, the unit will return to its home position and then stop once the home sensor limit is initiated (in most occasions under the drive and about 6-12 inches from the end stops). Since the valve is closed, running the unit back to the contracted position evacuates water from the collection chamber through the collection pipe orifices. Therefore, it acts as a self-back flushing system. Once the unit reaches its fully contracted position, the unit will wait for another call to run.

A call to run can be accomplished these ways when the system/unit are set in **REMOTE/AUTO** mode respectively:

- 1. By a communication control point via plant control system (Ethernet/IP).
- 2. By a momentary contact closure from a remote source (Dry Contacts).

A call to run can be accomplished these ways when the system/unit are set in **LOCAL/AUTO** mode respectively:

- 1. By setting a time to run on a 24hr time clock in the Local Panel Touch Screen.
- 2. By depressing the **MANUAL START** button on the Local Panel Touch Screen.

The unit sequencing is performed by a pre-programmed PLC.

Auto Operation Notes:

- Note that 'system selector switch' and 'LOR' refer to the Local/Off/Remote selector switch and 'unit selector switch' and 'HOA' refer to the Hand/Off/Auto selector switch. Also note that REMOTE/AUTO, LOCAL/AUTO, or any combination of the two refers to the system and unit selector switches respectively.
- ➤ When a remotely initiated cycle is executed in Local/Auto or Local/Hand mode, the collector unit will not respond.
- If at any time the sludge collector unit is set in Hand mode at the LCP during an automated cycle sequence, the collector unit sequence will be skipped until its next cycle is scheduled to begin.
- Note that the sludge valve actuator must be set in Remote mode to obtain control of it through the local control panel.
- Note that the system selector switch must be set in Remote mode and the unit selector switch set in Auto mode to enable automatic cycling from SCADA.
- Note that the system selector switch must be set in Local mode and the unit selector switch set in Auto mode to enable control of the collector unit from the Local Panel HMI touch screen terminal.
- ➤ Placing the system selector switch from Local to Remote or from Remote to Local when the unit is running will discontinue the collector run sequence until re-issued a run command. (Valve will close if not already)
- ➤ Placing the unit selector switch from Hand to Auto or from Auto to Hand when the unit is running will discontinue the collector run sequence until re-issued a run command. (Valve will close if not already)
- Run timers may be initiated through the Plant Control System (SCADA) if the Local Panel HMI 24hr time clock is not used. When a collector unit is scheduled to run, a remote start sequence may be sent to the Local Control Panel via Ethernet/IP or Dry Contacts from SCADA (whichever is preferable).
- Start time set-points for the collector unit may be selectable from the plant control system (SCADA). Whenever a start time is initiated, the collector unit shall operate in sequence until one complete cycle has been completed. Start times and cycle frequencies are modifiable via SCADA.
- ➤ PLC I/O tags and IP addresses shall be coordinated with MRI's field start up engineer and integrator.

Local/Hand Operation. (For PLC Bypass)-

In **LOCAL/HAND** mode (system LOR switch in local and unit HOA switch in hand), the Cable Drive (sludge collector) and Sludge Valve can be controlled independently of each other from the Local Control Panel.

Recommended control is as follows:

Before the sludge collector unit is called to run forward, the sludge valve for the corresponding unit shall be commanded open by the operator. When the sludge valve opens, the operator may then initiate a run forward command. When the operator selects forward, the unit will run to the far end of the basin, collecting sludge along the way. Once the sludge collector reaches its end sensor limit position, the operator shall wait approximately one to two minutes and then close the valve (manual valve closure may be done at operators discretion). The sludge collector will wait at its end position until it is commanded to run in reverse by the operator. When the sludge collector is commanded to run in reverse, the unit will run to the home end of the basin until it has reached its home sensor limit position. Once the unit reaches its fully contracted position, it will wait for another call to run by the operator.

Independent operation of the sludge collector and sludge valve can be accomplished these ways when the system/unit are set in **LOCAL/HAND** mode respectively:

- 1. <u>Sludge Collector, Forward</u> In LOCAL/HAND mode, open the Local Control Panel door to access the drive. When open, push the FORWARD button on the VFD keypad and depress the ENTER button. The cable drive will run and pull the sludge collector unit until it has either reached its end sensor limit position, a fault occurs, the sensor trips out on its torque set point, or is turned OFF on either the system switch, unit switch, or VFD keypad.
- 2. <u>Sludge Collector, Reverse</u> In <u>LOCAL/HAND</u> mode, open the Local Control Panel door to access the drive. When open, push the <u>REVERSE</u> button on the VFD keypad and depress the <u>ENTER</u> button. The cable drive will reverse and pull the sludge collector unit until it has either reached its home sensor limit position, a fault occurs, the sensor trips out on its torque set point, or is turned <u>OFF</u> on either the system switch, unit switch, or VFD keypad.
- 3. <u>Sludge Collector, Speed Control</u> In <u>LOCAL/HAND</u> mode, open the Local Control Panel door to access the drive. After a run forward or reverse command has been executed, turn the drive potentiometer on the VFD clockwise or counterclockwise. This will adjust the speed of the sludge collector unit to its desired speed set point. (Recommended speed is 1-3 fpm)
- 4. <u>Sludge Collector, Stop</u> In LOCAL/HAND mode, open the Local Control Panel door to access the drive. When open, depress the OFF button on the VFD keypad or depress the Emergency Stop Button found at the Cable Drive Junction Box. The system and unit selector switches may also be used to stop the unit. (Note: The cable drive E-Stop will work in any mode at any time)
- 5. <u>Sludge Valve, Open</u> In **LOCAL/HAND** mode, place the valve Open/Close selector switch to **OPEN**. This will open the Sludge Valve.
- 6. <u>Sludge Valve, Close</u> In **LOCAL/HAND** mode, place the valve Open/Close selector switch to **CLOSE**. This will close the Sludge Valve.

All PLC sequencing logic is bypassed in Local/Hand mode

Hand (Local) Operation Notes:

Independent operation and all of the parameters described above may be initiated through the Local Panel HMI touch screen terminal when the system switch is set in Local mode and the unit switch set in Auto mode. Refer to MRI's field start-up engineer for the HMI sequence of operation and command parameters.

- ➤ When in Auto mode, the sludge valve will not respond when selecting Open or Close at the valve selector switch. Thus, the valve selector switch will only work when the system switch is set in Local mode and the unit selector switch is set in Hand mode (PLC bypass).
- Note that the system selector switch must be set in Local mode to obtain control of the sludge collector unit at the Local Control Panel.
- Note that the system selector switch must be set in Local mode and the unit selector switch set in Hand mode to bypass the PLC and obtain control of the collector via the VFD drive.
- The HMI touch screen terminal is the only means of starting the collector unit and valve when the system/unit are set in Local/Auto mode respectively. The HMI is disabled in Local/Hand mode.
- To manually execute a "Full System Cycle at the Local Control Panel," set the system Local/Off/Remote selector switch to Local mode and the unit Hand/Off/Auto selector switch to Auto mode, then depress the designated icon buttons displayed on the HMI touch screen terminal. This will run the sludge collector unit at one full cycle described in Auto Operation. Note that when using the VFD to control the collector, the valve Open/Close selector switch is the only means of controlling the valve at the Local Control Panel.

Alarming_

An alarm will be generated on the following conditions:

- 1. <u>Over Torque (Drive Fault)</u> This is generated by a signal sent from a current monitor system inside the VFD drive measuring the amperage draw from the cable drive's AC motor.
- 2. <u>Time Out (Trip Fail)</u> When running, if the collector unit has not reached either of its home or end sensors in an allotted time. (Depends on the size of basin)
- 3. <u>Valve Failure</u> The sludge valve has either failed to open or failed to close.
- 4. <u>Under or Over voltage (Drive Fault)</u> This is generated by the VFD drive sensing the incorrect voltages being applied to the VFD or taken in from the motor.
- 5. <u>E-Stop Engaged</u> This is generated by depressing the emergency stop button at the Cable Drive Junction Box.
- 6. <u>General Drive Fault</u> This is generated by the drive sensing a motor failure or other related condition that may exist at the VFD, motor, or Local Control Panel.
- 7. <u>Mode Conflict</u> This is generated when the system selector switch is set in Remote mode and the unit selector switch is not set in Auto mode.

In an alarm condition, the run sequence will be stopped immediately and an alarm indication will be generated. This indication will be displayed by a red graphic **ALARM** icon light displayed on the Local Panel touch screen terminal. The unit will not run again until the alarm has been reset. Resetting the alarm can be achieved by depressing the red graphic **ALARM RESET** icon button displayed on the Local Panel touch screen terminal. Once the alarm has been reset, the unit will wait for a call to run, and then continue its sequence.

Alarming Notes:

➤ The Hose-Less Cable-VacTM sludge collector drive can endure an indefinite stall by means of an over current shutdown condition. The control system senses excessive current loading on the motor, issues a stop command, and generates an

- alarm. The unit can be started only after the alarm state is acknowledged and reset.
- All alarming may be password protected through the Local Panel touch screen terminal (may be assisted by MRI's field technician).
- ➤ Over Torque is plausible in Hand mode. (Contacts will open on VFD to stop the drive)
- Alarms are intended to be reset at the Local Control Panel. Conditional alarms such as 'Power Fail' or 'Com/Link Fail' may be resettable via the SCADA network. Refer to MRI's field start-up engineer for more information.
- ➤ Drive Fault Alarms are also viewable at the VFD keypad. If a drive fault condition occurs, the VFD will display a fault code corresponding to its specific failure or fault condition (fault codes begin with the letter F followed by numbers; example: F7 = Motor Overload). To identify the drive fault by its fault code, refer to the VFD user manual. See VFD user Manual below for more information. (Rockwell publication 22F-UM001D-EN-E)

Communications-

The Local Control Panel shall communicate to a Remote Control System or Master Control Panel (SCADA) via Ethernet Communications *OR* Dry Contacts.

A Remote Control System (SCADA) can **RECIEVE** the following information via **ETHERNET/IP**.

- 1. System in Local/Remote Mode
- 2. Unit in Hand/Auto Mode
- 3. Sludge Collector Unit Run Status
- 4. Sludge Collector Unit Travel Status
- 5. Sludge Collector Unit Timers and Cycle Frequency Status
- 6. Sludge Collector Unit Common Fail/Fault Alarm
- 7. Sludge Valve Position Status
- 8. Sludge Valve Failure Alarms

A Remote Control System (SCADA) can **RECIEVE** the following information via **DRY CONTACTS.**

- 1. System in Remote Mode
- 2. Sludge Collector Unit Run Status
- 3. Sludge Valve Position Status
- 4. Common Fail/Fault Alarm

The following parameters and status points can be viewable or adjustable via the Operator Interface located on the Local Control Panel HMI Touch Screen Terminal.

- 1. System Local/Off/Remote
- 2. Unit Hand/Off/Auto
- 3. Run Status indication for all equipment
- 4. Sludge Collector Travel Control & Status
- 5. Sludge Collector Timers and Cycle Frequency
- 6. Sludge Collector Speed Control & Status
- 7. Sludge Valve Position Control and Status
- 8. Failure/Fault alarms identifying cause of equipment failure
- 9. Alarm Set Points
- 10. Alarm History Log

11. Security Passwords

The following is an *EXAMPLE* list of commands located on the Local Control Panel HMI Touch Screen Terminal.

- 1. Run/Start Sequence
- 2. Run Forward/Reverse
- 3. Sludge Valve Open/Close
- 4. Alarm Indication/Reset
- 5. Configure Timers or Cycle Frequency
- 6. Set/Reset Security Passwords

A Remote Control System (SCADA) may **SEND** the following commands via **ETHERNET/IP**.

- 1. Initiate a Run/Start Sequence
- 2. Initiate a Stop Sequence
- 3. Initiate a Collector Run Forward Command
- 4. Initiate a Collector Run Reverse Command
- 5. Adjust Collector Speed
- 6. Initiate a Sludge Valve Open Command
- 7. Initiate a Sludge Valve Close Command
- 8. Configure Timers or Cycle Frequencies
- 9. Reset Alarm (See notes below)

A Remote Control System (SCADA) may **SEND** the following commands via **DRY CONTACTS**.

1. Initiate a Run/Start Sequence

Communication Notes:

- For an actual list of HMI commands, please refer to MRI's Field Engineer at system start-up. System training is also available if needed.
- ➤ HMI sequence of operation and screen shots shall be coordinated with MRI's Field Start-up Engineer.
- Alarms are intended to be reset at the Local Control Panel. Only conditional alarms such as 'Power Fail' or 'Com/Link Fail' that do not inhibit the units ability to run while the alarm is annunciated but recovered, can be reset from the SCADA network. Refer to MRI's field start-up engineer for more information.
- ➤ PLC I/O tags and IP addresses shall be coordinated with MRI's field start up engineer and integrator.

Provisions—

The Provisions for running single or concurrent units depend upon the free discharge piping. If the discharge piping is individually installed, then each unit can be run concurrently. You cannot dump sludge into a common Discharge Header unless appropriate pumps are supplied. Each unit must be able to evacuate at least 100-200gpm every sequence. Electrically, there are no issues to running 1 or 10 units at a time. GPM issues will arise if the units are ran concurrently with minimal discharge. *Meurer Research advises upon running one unit at a time with each having its own free discharge*.

SEQUENCE OF OPERATION

FOR FLOCCULATION (FLOCC) SYSTEM (FLOCCULATOR ONLY)

16133 West 45th Drive. Golden, CO 80403 Phone: 303-279-8373

Fax: 303-279-8429

Flocculator and Control Panel Operation MRI Pilot Unit: MRI-1502 (Flocculator unit Only)

Control of the Flocculator unit will be from the Local Control Panel (LCP-MRI-01) located on the side of the packaged pilot-unit tank. Operation of the Flocculator unit will be either through automated PLC sequencing, the Plant Control System (SCADA), the HMI Touch Screen Terminal located on the face of the Local Panel enclosure door, or the VFD Keypad and drive potentiometer located inside the Local Panel. These controls will allow the operator to control the following parameters, and will display the following information.

Remote/Auto & Local/Auto Operation—

In **REMOTE/AUTO** mode (system LOR switch in remote and unit HOA switch in auto), a call to run will allow the Flocculator unit to run a normal sequence of operation.

Which is as follows:

When the Flocculator unit is called to run, the Flocculator shaft and paddles will begin to rotate forward (the forward direction is indicated by the direction the face of the Flocculator paddles are pointed). The unit will continue to rotate until the cycle is over or until it is commanded off by the operator.

A call to run can be accomplished these ways when the system/unit are set in **REMOTE/AUTO** mode respectively:

- 1. By a communication control point via plant control system (Ethernet/IP).
- 2. By a momentary contact closure from a remote source (Dry Contacts).

A call to run can be accomplished these ways when the system/unit are set in **LOCAL/AUTO** mode respectively:

- 1. By setting a time to run on a 24hr time clock in the Local Panel Touch Screen.
- 2. By depressing the **MANUAL START** button on the Local Panel Touch Screen.

The unit sequencing is performed by a pre-programmed PLC.

Auto Operation Notes:

Note that 'system selector switch' and 'LOR' refer to the Local/Off/Remote selector switch and 'unit selector switch' and 'HOA' refer to the Hand/Off/Auto selector switch. Also note that REMOTE/AUTO, LOCAL/AUTO, or any

- combination of the two refers to the system and unit selector switches respectively.
- ➤ When a remotely initiated cycle is executed in Local/Auto or Local/Hand mode, the Flocculator unit will not respond.
- Note that the system selector switch must be set in Remote mode and the unit selector switch set in Auto mode to enable automatic cycling from SCADA.
- Note that the system selector switch must be set in Local mode and the unit selector switch set in Auto mode to enable control of the flocculator unit from the Local Panel HMI touch screen terminal.
- ➤ Placing the system selector switch from Local to Remote or from Remote to Local when the unit is running will discontinue the Flocculator run sequence until re-issued a run command.
- ➤ Placing the unit selector switch from Hand to Auto or from Auto to Hand when the unit is running will discontinue the Flocculator run sequence until re-issued a run command.
- ➤ Run timers may be initiated through the Plant Control System (SCADA) if the Local Panel HMI 24hr time clock is not used. When the Flocculator unit is scheduled to run, a remote start sequence may be sent to the Local Control Panel via Ethernet/IP or Dry Contacts from SCADA.
- ➤ PLC I/O tags and IP addresses shall be coordinated with MRI's field start up engineer and integrator.

Local/Hand Operation. (For PLC Bypass)–

In **LOCAL/HAND** mode (system LOR switch in Local and unit HOA switch in Hand), the Flocculator unit can be controlled independently at the Local Control Panel.

Independent operation of the flocculator can be accomplished these ways when the system/unit are set in **LOCAL/HAND** mode respectively:

- <u>Flocculator</u>, <u>Forward</u> In <u>LOCAL/HAND</u> mode, open the Local Control Panel door to access the drive. When open, push the <u>FORWARD</u> button on the VFD keypad and depress the <u>ENTER</u> button. The chain drive will run and rotate the Flocculator unit forward until either a fault occurs, the sensor trips out on its torque set point, or is turned to the <u>OFF</u> position on either the system, unit, or VFD Keypad.
- 2. <u>Flocculator, Reverse</u> In LOCAL/HAND mode, open the Local Control Panel door to access the drive. When open, push the REVERSE button on the VFD keypad and depress the ENTER button. The chain drive will run and rotate the Flocculator unit in reverse until either a fault occurs, the sensor trips out on its torque set point, or is turned to the OFF position on either the system, unit, or VFD Keypad.
- 3. <u>Flocculator</u>, <u>Speed Control</u> In <u>LOCAL/HAND</u> mode, open the Local Control Panel door to access the drive. After a run forward or reverse command has been executed, turn the drive potentiometer on the VFD clockwise or counterclockwise. This will adjust the speed of the Flocculator unit to its desired speed set point.
- 4. <u>Flocculator, Stop</u> In LOCAL/HAND mode, open the Local Control Panel door to access the drive. When open, depress the OFF button on the VFD keypad or depress the Emergency Stop Button found at the Flocculator Chain Drive E-Stop Junction Box. (Note: The E-Stop button will work in any mode at any time)

All PLC sequencing logic is bypassed in Local/Hand mode

Hand Operation Notes:

- Independent operation and all of the parameters described above may be initiated through the Local Panel HMI touch screen terminal when the system switch is set in Local mode and the unit switch set in Auto mode. Refer to MRI's field start-up engineer for the HMI sequence of operation and command parameters.
- Note that the system selector switch must be set in Local mode to obtain control of the sludge collector unit at the Local Control Panel.
- Note that the system selector switch must be set in Local mode and the unit selector switch set in Hand mode to bypass the PLC and obtain control of the flocculator unit via the VFD drive.
- ➤ The HMI touch screen terminal is the only means of starting the Flocculator unit when the system/unit are set in Local/Auto mode respectively. The HMI is disabled in Local/Hand mode.

Alarming-

An alarm will be generated on the following conditions:

- 1. <u>Over Torque (Drive Fault)</u> This is generated by a signal sent from a current monitor system inside the VFD drive measuring the amperage draw from the cable drive's AC motor.
- 2. <u>Under or Over voltage (Drive Fault)</u> This is generated by the VFD drive sensing the incorrect voltages being applied to the VFD or taken in from the motor.
- 3. <u>E-Stop Engaged</u> This is generated by depressing the emergency stop button at the Flocculator Chain Drive E-Stop Junction Box.
- 4. <u>General Drive Fault</u> This is generated by the drive sensing a motor failure or other related condition that may exist at the VFD, motor, or Local Control Panel.
- 5. <u>Mode Conflict</u> This is generated when the system selector switch is set in Remote mode and the unit selector switch is not set in Auto mode.

In an alarm condition, the run sequence will be stopped immediately and an alarm indication will be generated. This indication will be displayed by a red graphic **ALARM** icon light displayed on the Local Panel touch screen terminal. The unit will not run again until the alarm has been reset. Resetting the alarm can be achieved by depressing the red graphic **ALARM RESET** icon button displayed on the Local Panel touch screen terminal. Once the alarm has been reset, the unit will wait for a call to run, and then continue its sequence.

Alarming Notes:

- ➤ The Hose-Less Cable-VacTM sludge collector drive can endure an indefinite stall by means of an over current shutdown condition. The control system senses excessive current loading on the motor, issues a stop command, and generates an alarm. The unit can be started only after the alarm state is acknowledged and reset.
- All alarming may be password protected through the Local Panel touch screen terminal (may be assisted by MRI's field technician).
- Over Torque is plausible in Hand mode. (Contacts will open on VFD to stop the drive)

- Alarms are intended to be reset at the Local Control Panel. Conditional alarms such as 'Power Fail' or 'Com/Link Fail' may be resettable via the SCADA network. Refer to MRI's field start-up engineer for more information.
- ➤ Drive Fault Alarms are also viewable at the VFD keypad. If a drive fault condition occurs, the VFD will display a fault code corresponding to its specific failure or fault condition (fault codes begin with the letter F followed by numbers; example: F7 = Motor Overload). To identify the drive fault by its fault code, refer to the VFD user manual. See VFD user Manual below for more information. (Rockwell publication 22F-UM001D-EN-E)

<u>Communications</u>

The Local Control Panel shall communicate to a Remote Control System or Master Control Panel (SCADA) via Ethernet Communications *OR* Dry Contacts.

A Remote Control System (SCADA) can **RECIEVE** the following information via **ETHERNET/IP**.

- 1. System in Local/Remote Mode
- 2. Unit in Hand/Auto Mode
- 3. Flocculator Unit Run Status
- 4. Flocculator Unit Timers and Cycle Frequency Status
- 5. Flocculator Unit Common Fail/Fault Alarm

A Remote Control System (SCADA) can **RECIEVE** the following information via **DRY CONTACTS**.

- 1. System in Remote Mode
- 2. Flocculator Unit Run Status
- 3. Common Fail/Fault Alarm

The following parameters and status points can be viewable or adjustable via the Operator Interface located on the Local Control Panel HMI Touch Screen Terminal.

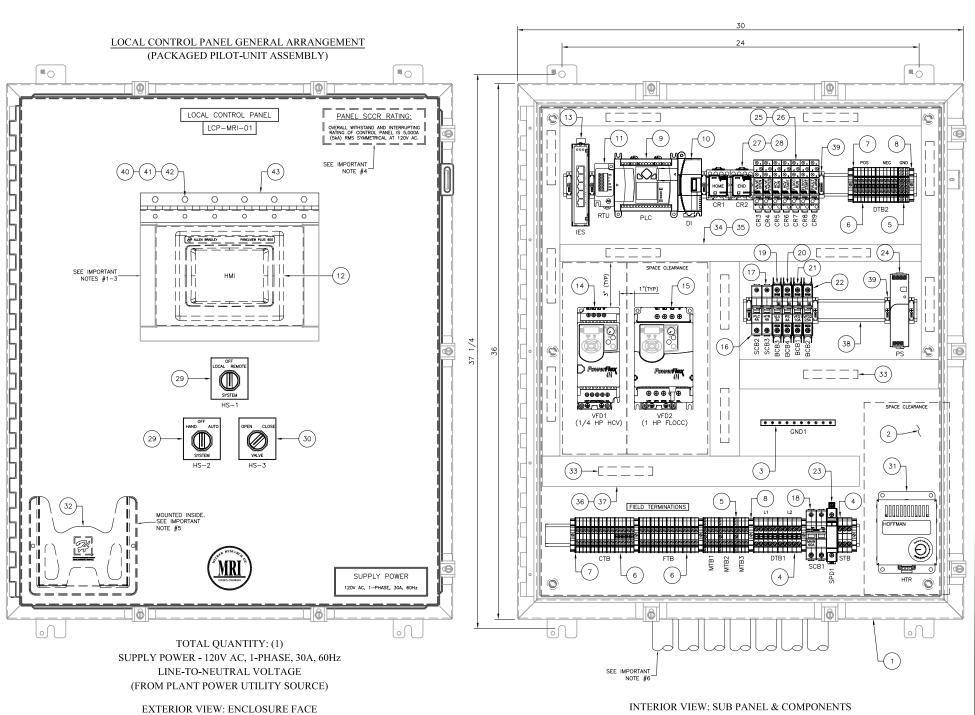
- 1. System Local/Off/Remote
- 2. Unit Hand/Off/Auto
- 3. Run Status indication for all equipment
- 4. Flocculator Timers and Cycle Frequency
- 5. Flocculator Speed Control & Status
- 6. Failure/Fault alarms identifying cause of equipment failure
- 7. Alarm Set Points
- 8. Alarm History Log
- 9. Security Passwords

The following is an *EXAMPLE* list of commands located on the Local Control Panel HMI Touch Screen Terminal.

- 1. Run/Start Sequence
- 2. Run Forward/Reverse
- 3. Alarm Indication/Reset
- 4. Configure Timers or Cycle Frequency
- 5. Set/Reset Security Passwords

A Remote Control System (SCADA) may SEND the following commands via

ETHERNET/IP.


- 1. Initiate a Run/Start Sequence
- 2. Initiate a Stop Sequence
- 3. Initiate a Flocculator Run Forward Command
- 4. Initiate a Flocculator Run Reverse Command
- 5. Adjust Flocculator Speed
- 6. Configure Timers or Cycle Frequencies
- 7. Reset Alarm (See notes below)

A Remote Control System (SCADA) may **SEND** the following commands via **DRY CONTACTS**.

1. Initiate a Run/Start Sequence

Communication Notes:

- For an actual list of HMI commands, please refer to MRI's Field Engineer at system start-up. System training is also available if needed.
- ➤ HMI sequence of operation and screen shots shall be coordinated with MRI's Field Start-up Engineer.
- Alarms are intended to be reset at the Local Control Panel. Only conditional alarms such as 'Power Fail' or 'Com/Link Fail' that do not inhibit the units ability to run while the alarm is annunciated but recovered, can be reset from the SCADA network. Refer to MRI's field start-up engineer for more information.
- ➤ PLC I/O tags and IP addresses shall be coordinated with MRI's field start up engineer and integrator.

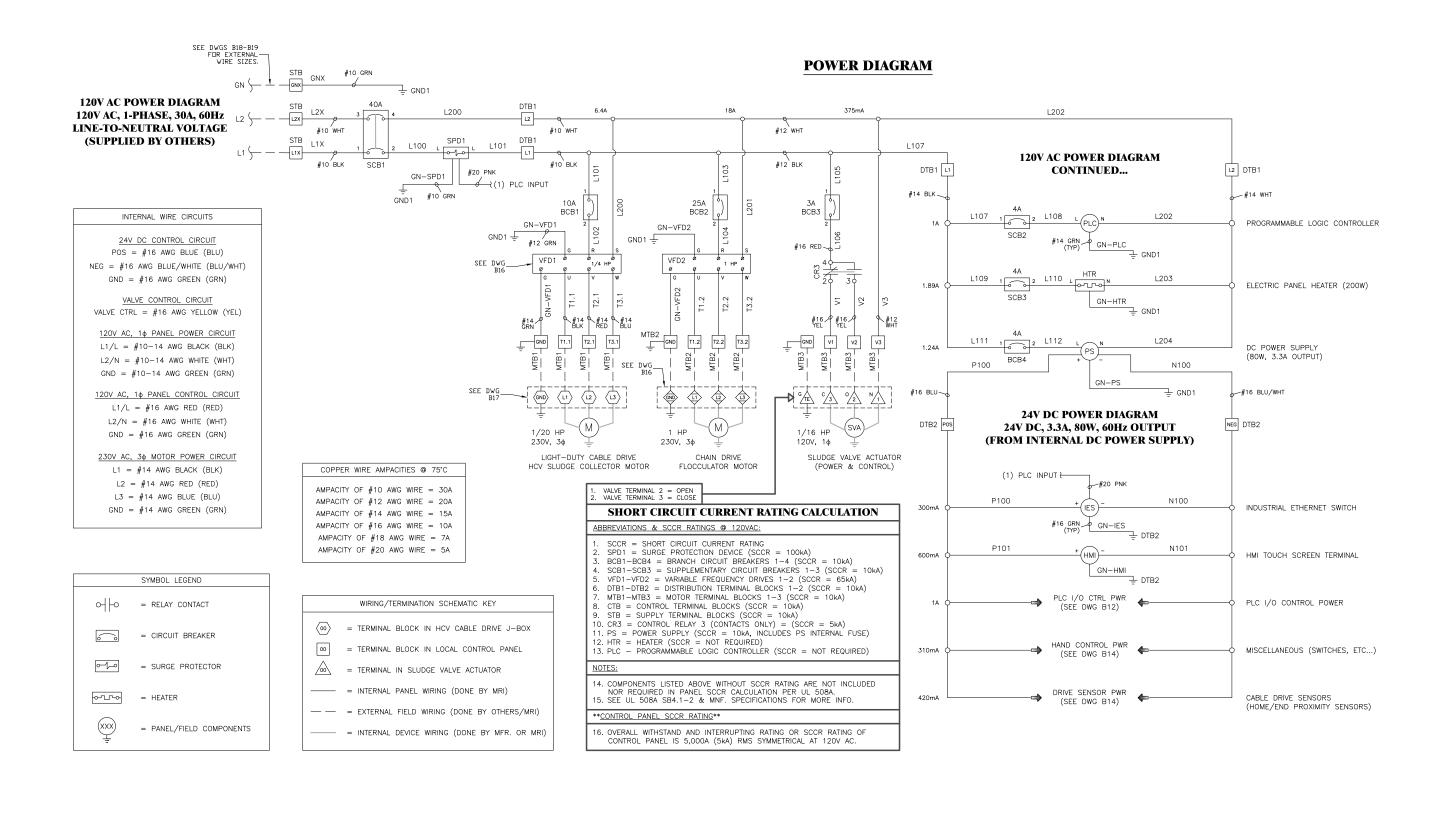
BILL OF MATERIALS				
ITEM #	QUANTITY	DESCRIPTION	MANUFACTURER	MODEL/PART #
1	1	36" X 30" X 08" NEMA 4X PAINTED ALUMINUM ENCLOSURE	HOFFMAN	A36H3008ALLP
2	1	36" X 30" SUB BACK-PANEL	HOFFMAN	A36P30
3	1	GROUND BUS BAR 10-POINT	ILSC0	D167-10
4	13	8mm POWER TERMINAL BLOCK	ALLEN BRADLEY	1492-J6
5	6	6mm GROUND TERMINAL BLOCK	ALLEN BRADLEY	1492-JG4
6	51*	5mm CONTROL TERMINAL BLOCK	ALLEN BRADLEY	1492-J3
7	22	TERMINAL BLOCK END PARTITION COVER	ALLEN BRADLEY	1492-EBJ3
8	8	TERMINAL BLOCK END STOP ANCHOR	ALLEN BRADLEY	1492-EAJ35
9	1	MICROLOGIX 1100 PLC CONTROLLER	ALLEN BRADLEY	1763-L16BWA
10	1	MICROLOGIX 1100 PLC 8PT. DC DIGITAL INPUT EXP. MODULE	ALLEN BRADLEY	1762-IQ8
11	1	MICROLOGIX 1100 DH-485/MODBUS RTU ADAPTER	ALLEN BRADLEY	1763-NC01
12	1	PANELVIEW PLUS COMPACT 600 HMI TOUCH SCREEN TERMINAL	ALLEN BRADLEY	2711PC-T6C20D8
13	1	5-PORT UNMANAGED INDUSTRIAL ETHERNET SWITCH	ANTAIRA	LNX-500A
14	1	POWERFLEX 4M AC HCV VFD DRIVE (120VAC, 1/4 HP)	ALLEN BRADLEY	22F-V1P6N103
15	1	POWERFLEX 4M AC FLOCC VFD DRIVE (120VAC, 1 HP)	ALLEN BRADLEY	22F-V4P5N103
16	1	SUPPLEMENTARY CIRCUIT BREAKER 1-POLE 4A (CRV C)	ALLEN BRADLEY	1492-SPM1C040
17	1	SUPPLEMENTARY CIRCUIT BREAKER 1-POLE 4A (CRV B)	ALLEN BRADLEY	1492-SPM1B040
18	1	SUPPLEMENTARY CIRCUIT BREAKER 1-POLE + N 40A (CRV C)	ALLEN BRADLEY	1492-SPM1C400-N
19	1	MINIATURE BRANCH CIRCUIT BREAKER 1-POLE 3A	ALLEN BRADLEY	1489-M1C030
20	1	MINIATURE BRANCH CIRCUIT BREAKER 1-POLE 4A	ALLEN BRADLEY	1489-M1C040
21	1	MINIATURE BRANCH CIRCUIT BREAKER 1-POLE 10A	ALLEN BRADLEY	1489-M1C100
22	1	MINIATURE BRANCH CIRCUIT BREAKER 1-POLE 25A	ALLEN BRADLEY	1489-M1C250
23	1	SURGE PROTECTOR 120VAC 1-POLE	ALLEN BRADLEY	4983-DS120-401
24	1	DC POWER SUPPLY (80W, 3.3A OUTPUT)	ALLEN BRADLEY	1606-XLE80E
25	7	1-POLE 24VDC CONTROL RELAY	ALLEN BRADLEY	700-HK36Z24-3-4
26	7	1-POLE RELAY BASE-SOCKET	ALLEN BRADLEY	700-HN121
27	2	2-POLE 24VDC CONTROL RELAY	ALLEN BRADLEY	700-HA32Z24-3-4
28	2	2-POLE RELAY BASE-SOCKET	ALLEN BRADLEY	700-HN125
29	2	3 POSITION SELECTOR SWITCH (2N.O. & 2N.C. CT BLOCK)	ALLEN BRADLEY	800H-JR2B
30	1	2 POSITION SELECTOR SWITCH (1N.O. & 1N.C. CT BLOCK)	ALLEN BRADLEY	800H-HR2A
31	1	ELECTRIC PANEL HEATER 200W	HOFFMAN	DAH2001A
32	1	THERMOPLASTIC DATA POCKET 6" X 6"	HOFFMAN	ADP1
33	1*	CORROSION INHIBITOR TAPE (4" STRIP PER SQ. FT.)	HOFFMAN	AHCI60R
34	2*	1" X 3" X 6' WIRE DUCT (AS NEEDED)	PANDUIT	F1X3LG6
35	2*	1" X 6' DUCT COVER (AS NEEDED)	PANDUIT	C1LG6
36	1*	2" X 3" X 6' WIRE DUCT (AS NEEDED)	PANDUIT	F2X3LG6
37	1*	2" X 6' DUCT COVER (AS NEEDED)	PANDUIT	C2LG6
38	2*	ALUMINUM DIN RAIL 3' (AS NEEDED)	IDEC	BNDN1000
39	8*	DIN RAIL STOP (AS NEEDED)	IDEC	BNL6
40	6	SELF-SEALING 1/4-20 X 1 18-8 S.S. HEX-BOLT	APM-HEXSEAL	ST1/4-20X1-2701
41	6	SELF-SEALING 1/4-20 18-8 S.S. HEX-NUT	APM-HEXSEAL	1/4-20-AJ-6-SS
42	6	SELF-SEALING 1/4 304 S.S. FLAT WASHER	APM-HEXSEAL	75082
43	1	HMI TOUCH SCREEN SUN SHIELD COVER (PAINTED BLUE)	MRI	N/A

WIRE COLOR KEY & SYSTEM NOTES:

- SUPPLY POWER WIRING TO BE SIZED FOR LOAD (MIN. #10 AWG) NTERNAL PANEL WIRING SHALL BE COLOR CODED AS FOLLOWS: BLUE (BLU) = +DC (POSITIVE) POWER/CONTROL CIRCUITS
 BLUE/WHITE (BLU/WHT) = -DC (NEGATIVE) POWER/CONTROL CIRCUITS PINK (PNK) = INTERNAL MISCELLANEOUS AUXILIARY INPUTS
 YELLOW (YEL) = VALVE CONTROL/STATUS CIRCUITS VIOLET (VLT) = DRY CONTACTS & FIELD CONTROL/STATUS CIRCUITS
 BLACK (BLK) = E-STOP CONTROL/STATUS CIRCUITS GRAY (GRY) = LOCAL/REMOTE/HAND/AUTO CONTROL/STATUS CIRCUITS ORANGE (ORG) = COLLECTOR/SYSTEM CONTROL/STATUS CIRCUITS BLACK (BLK) = AC POWER CIRCUITS (MIN. #14 AWG) RED (RED) = AC CONTROL CIRCUITS (MIN. #16 AWG) WHITE (WHT) = AC NEUTRAL CIRCUITS (MIN. #14 AWG) BLACK (BLK) = L1 LEAD OF 230V AC, 3\$\phi\$ MOTOR (MIN. #14 AWG) RED (RED) = L2 LEAD OF 230V AC, 3 ϕ MOTOR (MIN. #14 AWG) BLUE (BLU) = L3 LEAD OF 230V AC, 3 ϕ MOTOR (MIN. #14 AWG)
- GREEN (GRN) = EQUIPMENT GROUNDING CONDUCTORS
 ALL CONTROL WIRING = MIN. #20 AWG (SEE DWGS B12-B14)
 WIRES BEGINNING WITH SUFFIX 'P' INDICATE +DC (POSITIVE)
 WIRES BEGINNING WITH SUFFIX 'N' INDICATE -DC (NEGATIVE)
- WIRES BEGINNING WITH SUFFIX N INDICATE -DC (NEGATIVE)
 WIRES BEGINNING WITH SUFFIX 'H' INDICATE HAND CONTROL
 CONTROL CIRCUIT VOLTAGE IS 24V DC, 60Hz
 POWER CIRCUIT VOLTAGE IS 120V AC, 34, 60Hz
 MOTOR CIRCUIT VOLTAGE IS 230V AC, 34, 60Hz
 PANEL DIMENSIONS ARE 36"H X 30"W X 08"D (NEMA 4X ALUMINUM)
- . RECOMMENDED AND MOST EFFICIENT SPEED IS 1-3 FT/MIN . PANEL IS PROVIDED PRE-WIRED AND MRI TESTED
- 13. (*) IN BOM DENOTES AN APPROXIMATION OR MAY VARY

IMPORTANT NOTES:

- SELF-SEALING FASTENERS ARE USED TO MOUNT THE HMI TOUCH SCREEN COVER TO MAINTAIN THE PANEL'S NEMA RATING INTEGRITY.


- NEMA RATING INTEGRITY.
 THE HMI TOUCH SCREEN COVER IS PAINTED BLUE 304
 STAINLESS STEEL.
 SEE DRAWING BZO FOR HMI TOUCH SCREEN COVER
 DIMENSIONS, BOM, AND MOUNTING DETAILS.
 THE SCCR RATING LABEL SHALL BE PLACED ON THE
 INTERIOR SIDE OF ENCLOSURE DOOR (INSIDE).
 PANEL WILL BE PRIDVIDED WITH MRI ELECTRICAL
 DRAWINGS AND COMPIDNENT SPECIFICATION/INSTALL
 CUT SHEETS IN DATA PIDCKET.
 CONDUIT IS TO BE MOUNTED ON THE BOTTOM SIDE OF
 THE FINCIOSURE CARINET (FOOKE RY MRI & OTHERS)
- THE ENCLOSURE CABINET. (DONE BY MRI & OTHERS)

MEURER RESEARCH, INC.

PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP) PROJECT NUMBER: MRI-1502 PROJECT LOCATION: N/A

DRAWN BY: LGERBER SCALE: N/A DATE: 3/28/16 REV 1: REV 2: REV 3:

MEURER RESEARCH, INC.

PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP)
PROJECT NUMBER: MRI-1502

: MRI-1502 N/A

PROJECT LOCATION:

DRAWN BY: LGERBER SCALE: N/A DATE: 3/28/16

REV 1: REV 2: REV 3:

This drawing and the contents thereof are the property of Meurer research Inc. and may not be copied without the consent of Meurer Research, Inc.. This drawing may not be used in any way that would be detrimental to the aforementioned.

CUSTOMER N/A DRAWING NUMBER 1502B11

WIRE CONDUCTOR AMPACITIES

AMPACITY OF #16 AWG WIRE = 10A AMPACITY OF #18 AWG WIRE = 7A AMPACITY OF #20 AWG WIRE = 5A

INTERNAL WIRE CIRCUITS

24V DC CIRCUIT

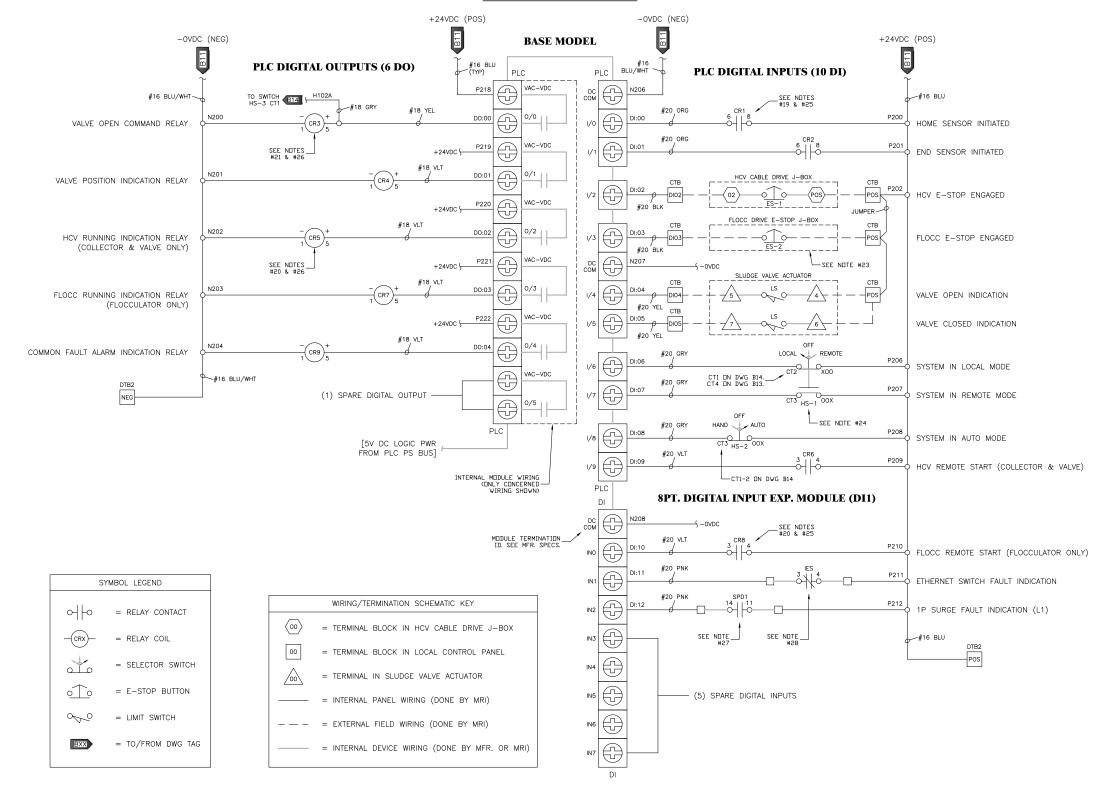
POS = #16 AWG BLUE (BLU)

NEG = #16 AWG BLUE/WHITE (BLU/WHT) GND = #16 AWG GREEN (GRN)

DIGITAL I/O CIRCUITS

INPUTS = #20 AWG CLR. VARIES OUTPUTS = #18 AWG CLR. VARIES

ABBREVIATIONS & NOTES:


- CR = CONTROL RELAY
- 2. LS = LIMIT SWITCH
 3. IES = INDUSTRIAL ETHERNET SWITCH
- 4. SPD = SURGE PROTECTION DEVICE
 5. DTB = DISTRIBUTION TERMINAL BLOCK
- 5. DTB = DISTRIBUTION TERMINAL BLOCK
 CTB = CONTROL TERMINAL BLOCK
 T. CT1 = CONTACT 1
 CT2 = CONTACT 2
 CT3 = CONTACT 3
 CONTACT 3

- 13. ES = EMERGENCY STOP (E-STOP) 14. DI = DISCRETE INPUT (DIGITAL)
- 15. DO = DISCRETE OUTPUT (DIGITAL)
 16. (5) SPARE DC SINK/SOURCE DIGITAL INPUTS
- (1) SPARE RELAY DÍGITAL OUTPUT
- 18. (0) SPARE ANALOG VOLTAGE INPUTS (NOT SHOWN) 19. SEE HAND DIAGRAM ON DRAWING B14 FOR HOME
- & END SENSOR RELAY COIL CONFIGURATIONS.
 SEE DRY CONTACTS ON DRAWING B13 FOR RUN,
 ALARM, & VALVE POSITION OUTPUT RELAY CONTACT CONFIGURATIONS AND FOR REMOTE START INPUT RELAY COIL CONFIGURATIONS. 21. SEE 120VAC POWER DIAGRAM ON DRAWING B11
- FOR VALVE OPEN/CLOSE COMMAND RELAY CONTACT CONFIGURATIONS
- 22. SEE DRAWING B10 FOR WIRE COLOR KEY.
 23. THE FLOCCULATOR E-STOP J-BOX DOES NOT HAVE TERMINAL BLOCKS. WIRES ARE TERMINATED DIRECTLY TO THE E-STOP BUTTON'S CONTACT BLOCK. (DONE BY MRI)

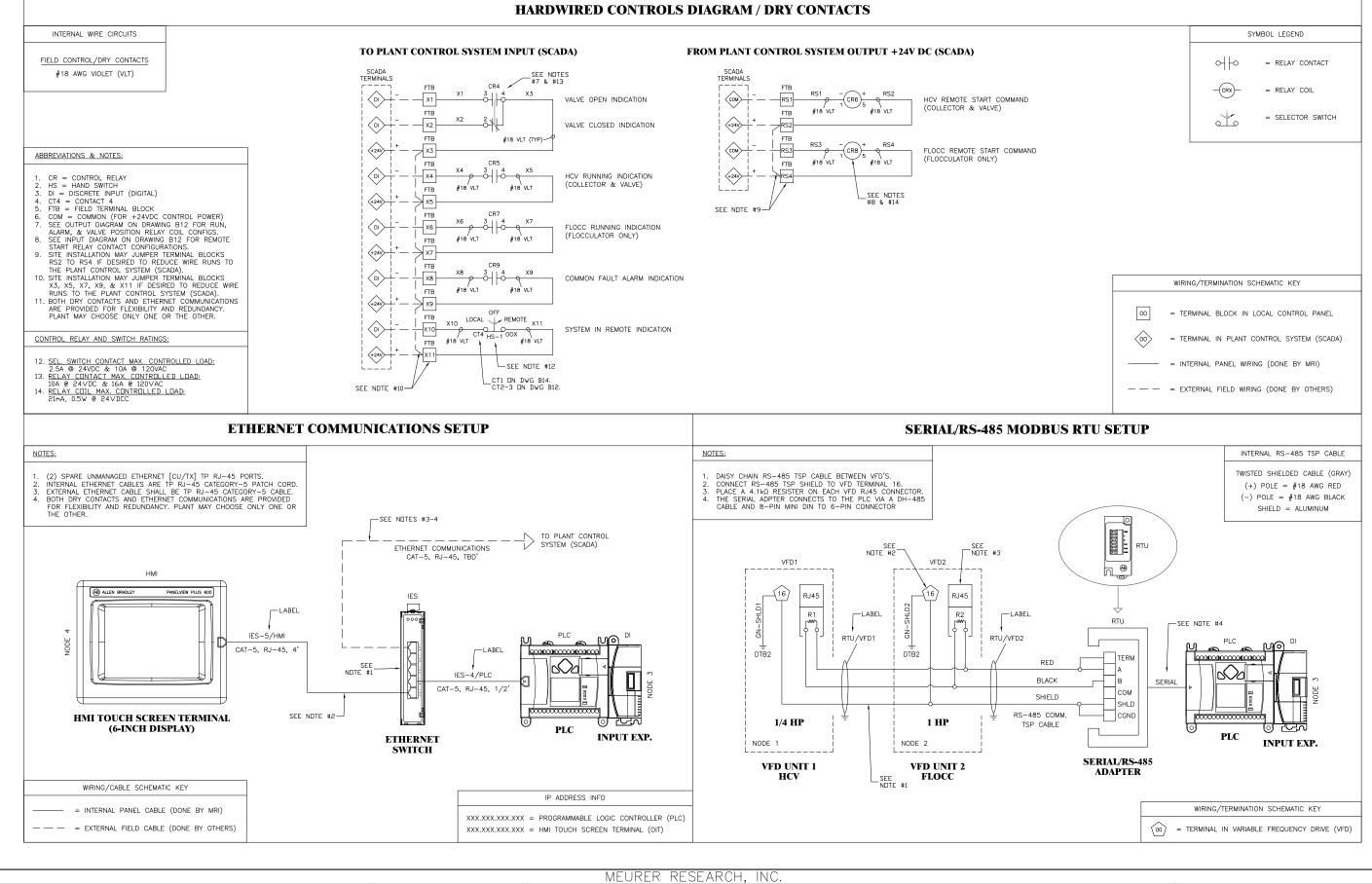
CONTROL RELAY, SWITCH, & CONTACT RATINGS:

- 24. SWITCH CONTACT MAX. CONTROLLED LOAD: 2.5A @ 24VDC & 10A @ 120VAC
- 25. RELAY CONTACT MAX CONTROLLED LOAD:
 10A @ 24VDC & 16A @ 120VAC
 26. RELAY COIL MAX. CONTROLLED LOAD:
- 21mA, 0.5W @ 24VDC 27. SPD CONTACT MAX. CONTROLLED LOAD:
- 1A @ 24VDC & 2A @ 120VAC
- 28. IES CONTACT MAX. CONTROLLED LOAD: 1A @ 24VDC

I/O CONTROL DIAGRAM

MEURER RESEARCH, INC.

PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP) PROJECT NUMBER: MRI-1502 PROJECT LOCATION: N/A


DRAWN BY: LGERBER SCALE: N/A DATE: 3/28/16 REV 1: REV 2: REV 3:

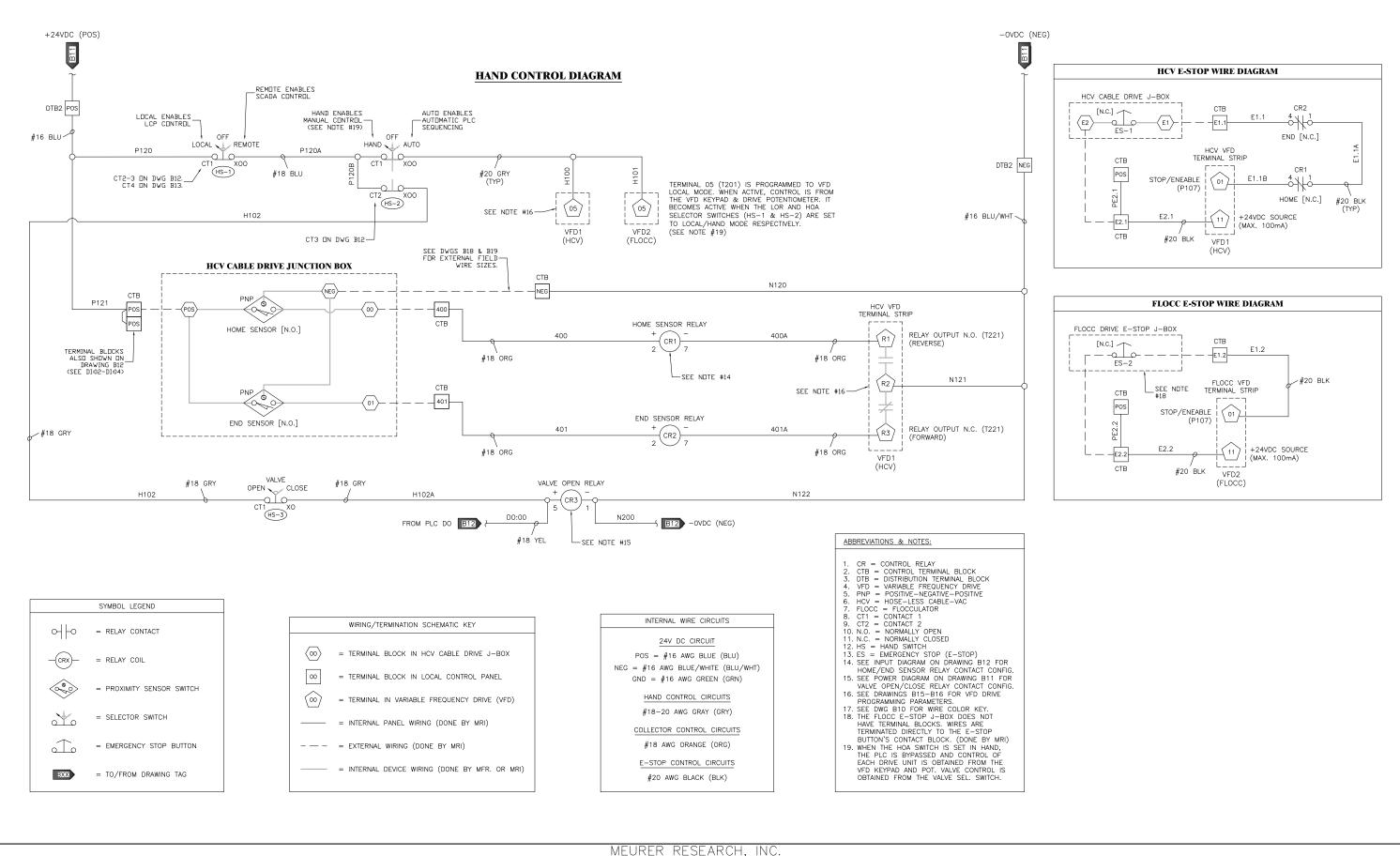
DIGITAL I/O CONTROL DIAGRAM (INCLUDÉS I/O EXPANSION MODULE)

This drawing and the contents thereof are the property of Meurer research Inc. and may not be copied without the consent of Meurer Research, Inc.. This drawing may not be used in any way that would be detrimental to the aforementioned. CUSTOMER NUMBER

DRAWING NUMBER 1502B12 N/A

PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP) PROJECT NUMBER: MRI-1502

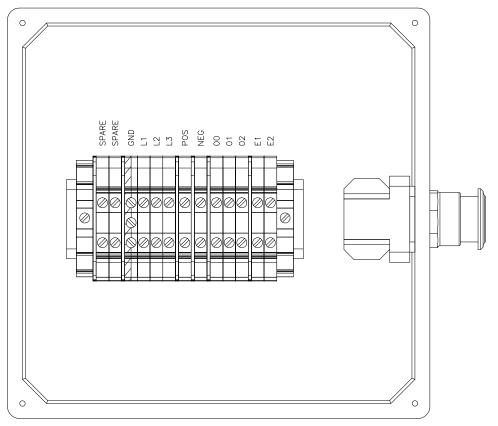
N/A


PROJECT LOCATION:

SCALE: N/A DATE: 3/28/16

DRAWN BY: LGERBER

REV 1: REV 2: REV 3:


PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP) PROJECT NUMBER: MRI-1502 PROJECT LOCATION: N/A

DRAWN BY: LGERBER SCALE: N/A DATE: 3/28/16 REV 1: REV 2: REV 3:

JUNCTION BOX DETAIL (ENLARGED ILLUSTRATIVE VIEW)

ABBREVIATIONS & NOTES:

- CTB = CONTROL TERMINAL BLOCK

- CIB = CONTROL TERMINAL BLOCK
 MTB = MOTOR TERMINAL BLOCK
 VFD = VARIABLE FREQUENCY DRIVE
 HCV = HOSE-LESS CABLE-VAC
 HCV COLLECTOR CORRESPONDS TO THE SLUDGE
 COLLECTOR 1/20 HP CABLE DRIVE MOTOR. IT IS
- POWERED BY A 1/4 HP VFD INSIDE THE LCP.
 THE HCV COLLECTOR MOTOR IS RATED FOR AN
 INPUT VOLTAGE OF UP TO 230V AC, 1—PHASE
 AND WILL BE SUPPLIED BY THE VFD.

WIRING/TERMINATION SCHEMATIC KEY

= TERMINAL BLOCK IN HCV CABLE DRIVE J-BOX

= TERMINAL BLOCK IN LOCAL CONTROL PANEL

= INTERNAL PANEL WIRING (DONE BY MRI)

---- = EXTERNAL FIELD WIRING (DONE BY MRI)

4M VFD PROGRAMMING PARAMETERS:

PROGRAMMING PARAMETERS (VFD CONNECTS TO 1/4 HP HCV MOTOR):

- 1. SET P101 (MOTOR NAMEPLATE VOLTS) TO 230V.
- 2. SET P102 (MOTOR NAMEPLATE HERTZ) TO 60Hz (@ 230VAC).
- 3. SET P103 (MOTOR OVERLOAD CURRENT) TO 0.36A (FLA X 150% @ 230VAC).
- 4. SET P104 (MINIMUM OUTPUT FREQUENCY) TO OHz (@ 230VAC).
- 5. SET P105 (MAXIMUM OUTPUT FREQUENCY) TO 60Hz (@ 230VAC).
- 6. SET P106 (START SOURCE) TO 5 FOR COMM PORT MODE.
- 7. SET P108 (SPEED REFRENCE) TO 5 FOR COMM PORT MODE.
- 8. SET P109 (ACCELERATION TIME 1) TO 3 FOR DRIVE ACCEL TIME OF 3 SECONDS
- 9. SET P110 (DECELERATION TIME 1) TO 3 FOR DRIVE DECEL TIME OF 3 SECONDS.
- 10. SET T201 (INPUT TERMINAL 5) TO 5 FOR VFD LOCAL MODE.
- 11. SET T221 (RELAY OUTPUT, R1-R3) TO 3 FOR REVERSE MODE.
- 12. SET C302 (RS485 COMM DATA RATE) TO 4 FOR 19,200 BAUD RATE.
- 13. SET C303 (RS485 COMM NODE ADDRESS) TO 1 FOR MODBUS NODE ADDRESS 1
- 14. SET A457 (MAXIMUM OUTPUT VOLTAGE) TO 230V.
- 15. SET A461 (MOTOR NAMEPLATE FLA) TO 0.24A (@ 230VAC).
- 16. SET THE SINK/SOURCE DIP SWITCH TO SINK.

NOTE: ALL PARAMETERS & SETTINGS STATED ABOVE HAVE BEEN MRI TESTED.

MEURER RESEARCH, INC.

MRI STANDARD (PILOT-UNIT LCP) PROJECT NAME: PROJECT NUMBER: MRI-1502 PROJECT LOCATION: N/A

SCALE: N/A DATE: 3/28/16

DRAWN BY: LGERBER

REV 1: REV 2: REV 3:

HCV MOTOR CONTROL DIAGRAM (1/20 HP SLUDGE COLLECTOR MOTOR)

This drawing and the contents thereof are the property of Meurer research Inc. and may not be copied without the consent of Meurer Research, Inc.. This drawing may not be used in any way that would be detrimental to the aforementioned.

CUSTOMER N/A

DRAWING NUMBER 1502B15

WIRING/TERMINATION SCHEMATIC KEY

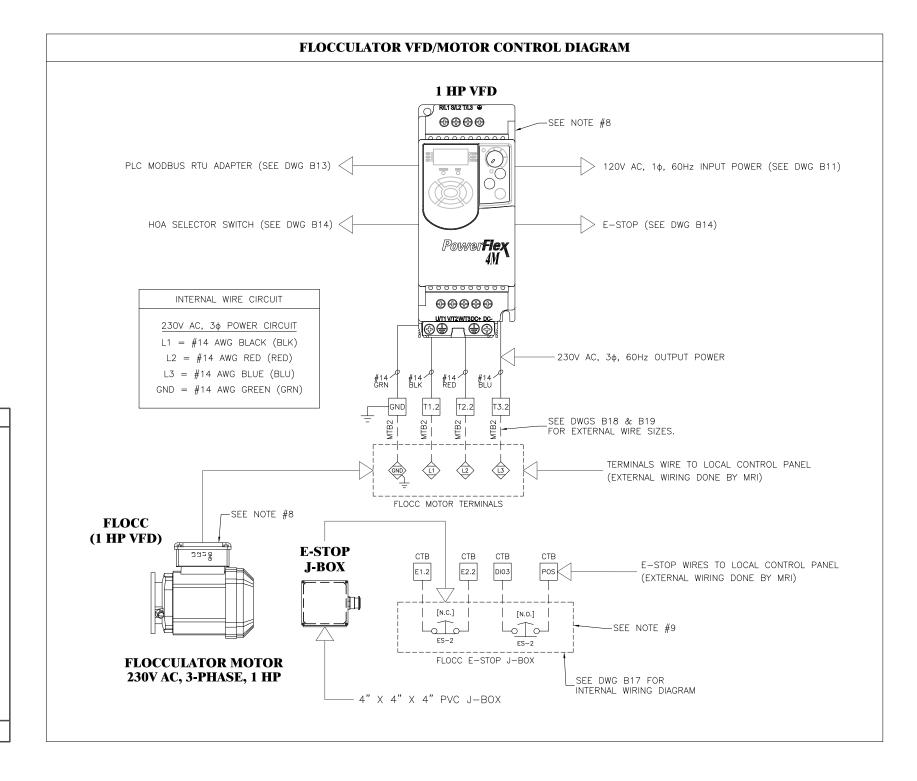
= TERMINAL IN FLOCCULATOR MOTOR

= TERMINAL BLOCK IN LOCAL CONTROL PANEL

= INTERNAL PANEL WIRING (DONE BY MRI)

---- = EXTERNAL FILED WIRING (DONE BY MRI)

ABBREVIATIONS & NOTES:


- MTB = MOTOR TERMINAL BLOCK
- CTB = CONTROL TERMINAL BLOCK
- VFD = VARIABLE FREQUENCY DRIVE
- 4. FLOCC = FLOCCULATOR
- ES = E-STOP
- 6. N.O. = NORMALLY OPEN
 7. N.C. = NORMALLY CLOSED
 8. FLOCC CORRESPONDS TO THE HORIZONTAL 1 HP
- FLOCCULATOR MOTOR. IT IS POWERED BY A 1 HP VFD INSIDE THE LCP.
- 9. THE FLOCCULATOR E-STOP J-BOX DOES NOT HAVE TERMINAL BLOCKS. WIRES ARE TERMINATED DIRECTLY TO THE E-STOP BUTTON'S CONTACT BLOCK. (DONE BY MRI)

4M VFD PROGRAMMING PARAMETERS:

PROGRAMMING PARAMETERS (VFD CONNECTS TO 1 HP FLOCC MOTOR):

- 1. SET P101 (MOTOR NAMEPLATE VOLTS) TO 230V.
- 2. SET P102 (MOTOR NAMEPLATE HERTZ) TO 60Hz (@ 230VAC).
- 3. SET P103 (MOTOR OVERLOAD CURRENT) TO 5.7A (FLA X 150% @ 230VAC).
- 4. SET P104 (MINIMUM OUTPUT FREQUENCY) TO OHz (@ 230VAC).
- 5. SET P105 (MAXIMUM OUTPUT FREQUENCY) TO 60Hz (@ 230VAC).
- 6. SET P106 (START SOURCE) TO 5 FOR COMM PORT MODE.
- 7. SET P108 (SPEED REFRENCE) TO 5 FOR COMM PORT MODE.
- 8. SET P109 (ACCELERATION TIME 1) TO 3 FOR DRIVE ACCEL TIME OF 3 SECONDS.
- 9. SET P110 (DECELERATION TIME 1) TO 3 FOR DRIVE DECEL TIME OF 3 SECONDS.
- 10. SET T201 (INPUT TERMINAL 5) TO 5 FOR VFD LOCAL MODE.
- 11. SET C302 (RS485 COMM DATA RATE) TO 4 FOR 19,200 BAUD RATE.
- 12. SET C303 (RS485 COMM NODE ADDRESS) TO 2 FOR MODBUS NODE ADDRESS 2.
- 13. SET A457 (MAXIMUM OUTPUT VOLTAGE) TO 230V
- 14. SET A461 (MOTOR NAMEPLATE FLA) TO 3.8A (@ 230VAC).
- 15. SET THE SINK/SOURCE DIP SWITCH TO SINK.

NOTE: ALL PARAMETERS & SETTINGS STATED ABOVE HAVE BEEN MRI TESTED.

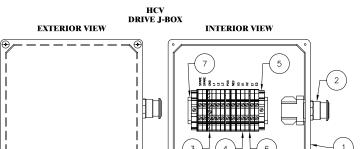
MEURER RESEARCH, INC.

PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP) PROJECT NUMBER: MRI-1502

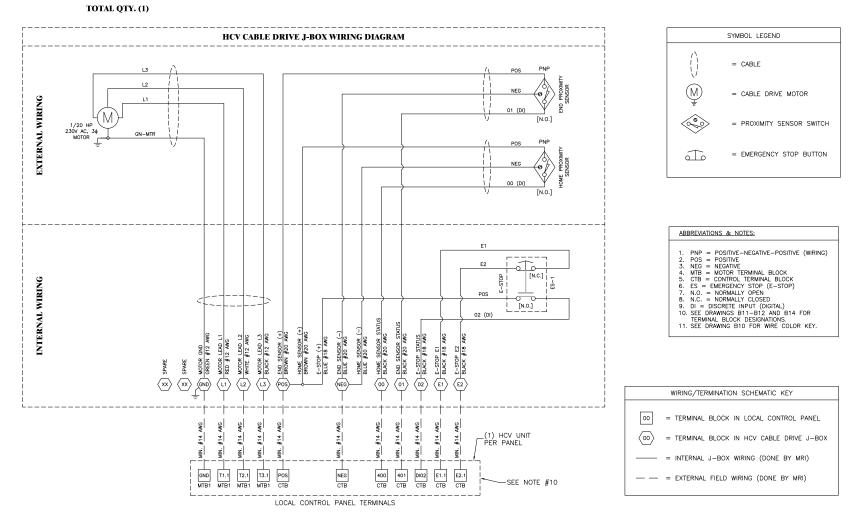
N/A

PROJECT LOCATION:

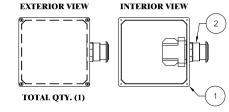
SCALE: N/A DATE: 3/28/16

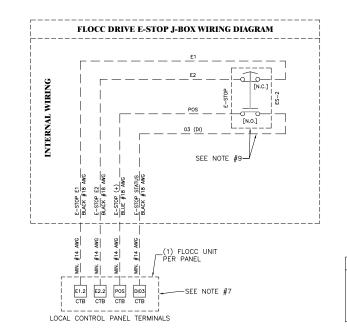

DRAWN BY: LGERBER

REV 1:


REV 2:

REV 3:




	BILL OF MATERIALS					
ITEM NO.	TEM NO. QUANTITY DESCRIPTION			MODEL NO.		
1	1	8" X 8" X 4" NEMA 4X PVC JUNCTION BOX	CANTEX	5133712		
2	1	EMERGENCY STOP PUSH-PULL/TWIST BUTTON RED	ALLEN BRADLEY	800H-FRXT6A1		
3	1	6mm GROUND TERMINAL BLOCK	ALLEN BRADLEY	1492-JG4		
4	12	5mm CONTROL TERMINAL BLOCK	ALLEN BRADLEY	1492-J3		
5	2	TERMINAL END STOP ANCHOR	ALLEN BRADLEY	1492-EAJ35		
6	6	TERMINAL END PARTITION COVER	ALLEN BRADLEY	1492-EBJ3		
7	1	ALUMINUM DIN RAIL (5")	IDEC	BNDN1000		

		BILL OF MATERIALS		
ITEM NO.	QUANTITY	DESCRIPTION	MANUFACTURER	MODEL NO.
1	1	4" X 4" X 4" NEMA 4X PVC JUNCTION BOX	CANTEX	5133709
2	1	EMERGENCY STOP PUSH-PULL/TWIST BUTTON RED	ALLEN BRADLEY	800H-FRXT6A1

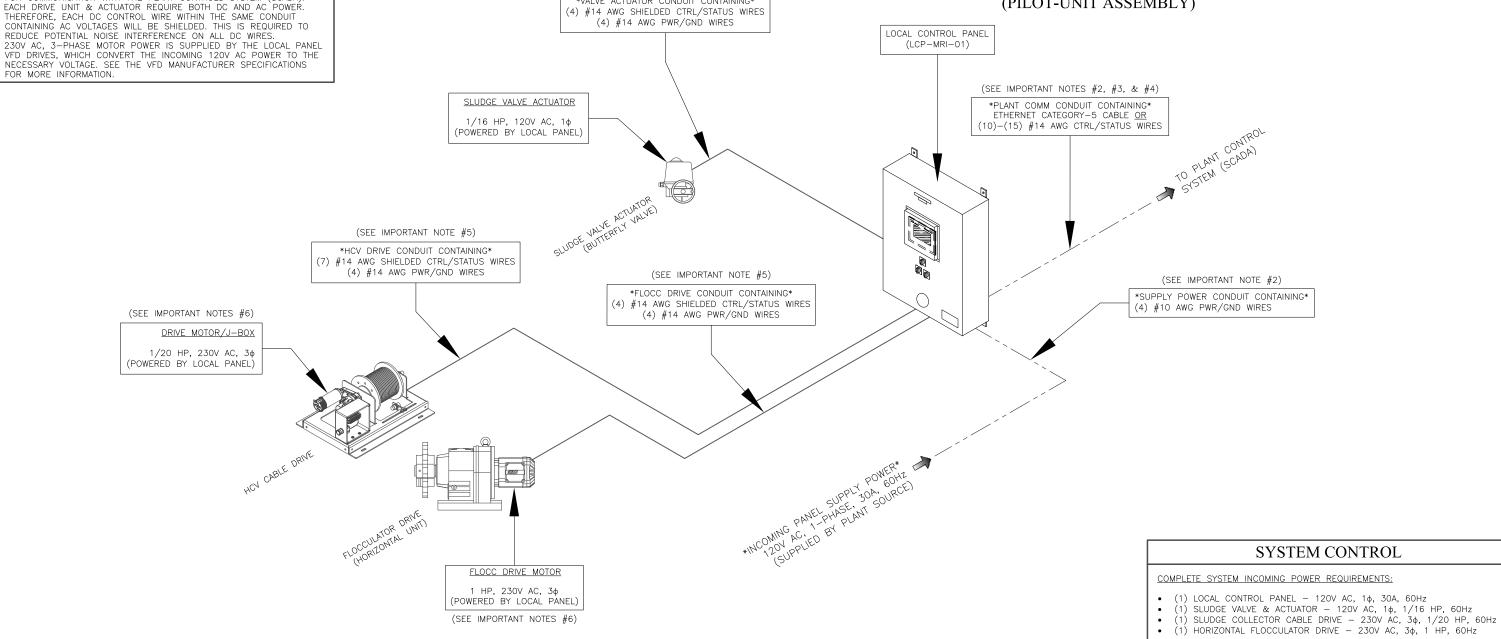
ABBREVIATIONS & NOTES: 1. POS = POSITIVE 2. CTB = CONTROL TERMINAL BLOCK 3. ES = EMERGENCY STOP (E-STOP) 4. N.O. = NORMALLY OPEN 5. N.C. = NORMALLY OLOSED 6. DI = DISCRETE INPUT (DIGITAL) 7. SEE DRAWINGS B11-B12, B14, AND B17 FOR TERMINAL BLOCK DESIGNATIONS. 8. SEE DRAWING B10 FOR WIRE COLOR KEY. 9. THE FLOCCULATOR E-STOP J-BOX DOES NOT HAVE TERMINAL BLOCKS. WIRES ARE TERMINATED DIRECTLY TO THE E-STOP BUTTON'S CONTACT BLOCK. (DONE BY MRI)

MEURER RESEARCH, INC.

PROJECT NAME: MRI STANDARD (PILOT-UNIT LCP)
PROJECT NUMBER: MRI-1502
PROJECT LOCATION: N/A

DRAWN BY: LGERBER SCALE: N/A DATE: 3/28/16

REV 1: REV 2: REV 3:



IMPORTANT NOTES:

- THE ALLEN BRADLEY HMI TOUCH SCREEN WILL DISPLAY ALL ALARMS, CONDITIONS, AND POSITIONS REQUIRED FOR THIS SYSTEM. IT WILL ALSO PROVIDE FULL CONTROL OF EACH UNIT.
- FIELD CONDUIT ROUTING IS SYMBOLIC. SITE INSTALLATION WILL DICTATE ACTUAL ROUTING AND SIZES OF CONDUIT INSTALLED BY OTHERS. ALL OTHER CONDUIT INSTALLED BY MRI SHALL BE AS SHOWN ON DRAWINGS
- THE PLANT (SCADA) CONDUIT INDICATES (10)-(15) #14 AWG WIRES BECAUSE DEPENDING ON SITE WIRING METHODS, SOME WIRES/BLOCKS MAY BE JUMPERED TOGETHER TO REDUCE THE AMOUNT OF WIRE RUNS TO THE PLANT CONTROL SYSTEM. SEE DRAWING B13.
- BOTH DRY CONTACTS AND ETHERNET HAVE BEEN PROVIDED FOR FLEXIBILITY & REDUNDANCY. PLANT MAY CHOOSE ONE OR THE OTHER FOR COMMUNICATION WITH THE PLANT CONTROLS SYSTEM (SCADA).

 EACH DRIVE UNIT & ACTUATOR REQUIRE BOTH DC AND AC POWER.
- THEREFORE, EACH DC CONTROL WIRE WITHIN THE SAME CONDUIT CONTAINING AC VOLTAGES WILL BE SHIELDED. THIS IS REQUIRED TO
- VFD DRIVES, WHICH CONVERT THE INCOMING 120V AC POWER TO THE NECESSARY VOLTAGE. SEE THE VFD MANUFACTURER SPECIFICATIONS FOR MORE INFORMATION

CONDUIT/WIRE KEY

= EXTERNAL CONDUIT/WIRING DONE BY OTHERS

= EXTERNAL CONDUIT/WIRING DONE BY MRI

SYSTEM CONTROL

COMPLETE SYSTEM INCOMING POWER REQUIREMENTS:

NOTES:

ALL PANEL MOUNTING, WIRE, COM CABLE, & CONDUIT WORK PROVIDED BY MRI & OTHERS. ALL WIRE GAUGES SHOWN ARE MINIMUM SIZES. CONTRACTOR MAY USE LARGER ALTERNATIVES BUT NOT SMALLER.

ENCLOSURE SIZE:

• (1) LOCAL CONTROL PANEL - 36" X 30" X 08" (NEMA 4X ALUMINUM)

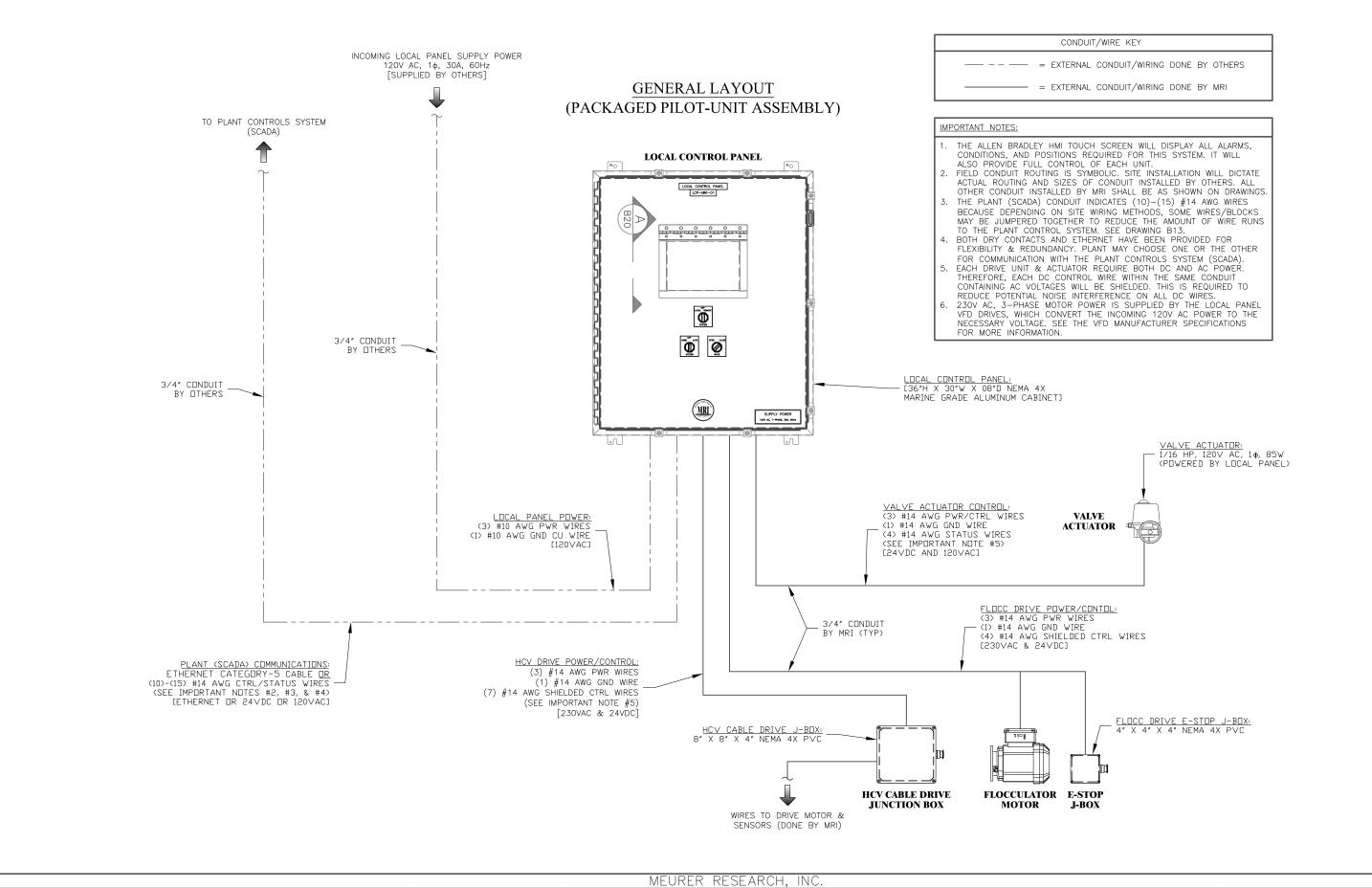
MRI STANDARD (PILOT-UNIT LCP) PROJECT NAME:

PROJECT NUMBER: MRI-1502 PROJECT LOCATION: N/A

SCALE: N/A DATE: 3/28/16

DRAWN BY: LGERBER

REV 1:


REV 2:

REV 3:

SYSTEM CONTROL CONDUIT ARRANGEMENTS This drawing and the contents thereof are the property of Meurer research Inc. and may not be copied without the consent of Meurer Research, Inc.. This drawing may not be used in any way that would be detrimental to the aforementioned.

CUSTOMER N/A DRAWING NUMBER 1502B18

MRI STANDARD (PILOT-UNIT LCP) PROJECT NAME: PROJECT NUMBER: MRI-1502 PROJECT LOCATION: N/A

DRAWN BY: LGERBER SCALE: N/A DATE: 3/28/16 REV 1:

REV 2:

REV 3:

9.0

Operation of the Plate Pilot Unit

The Plate Pilot Unit is designed to operate at 110 gpm. Running the pilot at a higher rate may result in higher turbidities in the effluent (refer to table 9.3). At flows <110 gpm the pilot should produce <1 ntu effluent. Higher flow rates result in higher loading rates across the projected area of the plate settlers which may result in >1 ntu in the effluent.

9.1 Chemical Feed

Chemicals can be mixed in the 35 gallon tanks (optional). The feed pumps will inject the chemicals ahead of the rapid mix. There are three tubing sizes available for the chemical feed pumps. To determine the tubing needed per the feed rate, use the following chart:

	L/S 16 tubing	L/S 25 tubing	L/S 18 tubing
Tubing ID	3.1 mm	4.8 mm	7.9 mm
Feed rate	0.8 to 80 mL/min	1.7 to 170 mL/min	3.8 to 380 mL/min

Once the proper tubing is selected, the feed rate can be adjusted by the speed control on the chemical feed pump.

The plant personnel should be consulted as to the chemicals and dosages that have worked the best in their experience.

The Chemical feed pumps are independent of the control panel. Therefore they are not flow paced for inlet turbidity fluctuation. This needs to be done manually. The pumps however, have the ability to be flow paced if an analog output is provided. See the pump manual for details.

9.2 Flocculator Adjustments

The speed of the flocculator can be adjusted by the control knob located inside the control panel which is mounted on the side of the Plate Settler Pilot Unit. The "G" values for the different speed settings are:

@ 60°F

Setting on control	RPM's	1st Stage G (sec-1)	2nd Stage G (sec-1)	3rd Stage G (sec ⁻¹)
1	3	10.2	6.1	3.2
2	4	15.7	9.4	4.9
3	5	21.9	13.2	6.9
4	6.5	32.5	19.5	10.2
5	7.5	40.3	24.2	12.7
6	9	53.0	31.8	16.6
7	10.5	66.7	40.0	21.0
8	12	81.5	49.0	25.6
9	13.5	97.3	58.3	30.6

@ 45°F

Setting on control	RPM	1st Stage G (sec-1)	2nd Stage G (sec-1)	3rd Stage G (sec ⁻¹)
1	3	9.2	5.5	2.9
2	4	14.1	8.5	4.4
3	5	19.8	11.9	6.2
4	6.5	29.3	17.6	9.2
5	7.5	36.3	21.8	11.4
6	9	47.7	28.6	15.0
7	10.5	60.1	36.0	18.9
8	12	73.4	44.0	23.1
9	13.5	87.6	52.5	27.5

@ 34°F

Setting on control	RPM	1st Stage G (sec-1)	2nd Stage G (sec-1)	3rd Stage G (sec ⁻¹)
1	3	8.3	5.0	2.6
2	4	12.8	7.7	4.0
3	5	17.9	10.7	5.6
4	6.5	26.5	15.9	8.3
5	7.5	32.8	19.7	10.3
6	9	43.1	29.5	13.5
7	10.5	54.3	32.6	17.1
8	12	66.4	39.8	20.9
9	13.5	79.2	47.5	24.9

The detention time of the flocculator is determined by the flow rate through the Plate Settler Pilot Unit. Detention times for the flocculator are:

Flow rate (gpm)	Detention time (3 mechanical, 1 hydraulic) [3 mechanical only]	
60	31 min <u>[28 <i>min</i>]</u>	
70	27 min <i>[24 min]</i>	
80	23.5 min <u>[21 min]</u>	
90	21 min <i>[18.7 min</i>]	
100	19 min <i>[16.8 min</i>]	
110	17 min <i>[15.3 min</i>]	
120	15.7 min <i>[14 min]</i>	
130	14.5 min <u>[13 min]</u>	
140	13.5 min <i>[12 min]</i>	
150	12.5 min [11.2 min]	

9.3 Plate Settlers

Operating the plate settlers at different flow rates will change the loading rate across the projected area. The table below shows the loading rates at various flow rates and the expected effluent turbidities.

Flow rate (gpm)	Loading Rate (gpm/ft²)	Expected Effluent (NTU)
60	.16	.25
70	.19	.25
80	.22	.36
90	.24	.47
110	.29	.58
120	.32	1-1.5
130	.35	1.5-2
140	.37	1.5-2
150	.4	2+

NOTE: The Expected Effluent (NTU) is estimated. This may vary due to actual conditions.

9.4 Hoseless Sludge Collector

The Hoseless Sludge Collector travels across the bottom of the settling area and removes the settled solids.

The speed pre-set by the MRI Service Technician at time of start up should not be adjusted.

The frequency of operation is set by the real time clock located inside the control panel. To set the desired start times simply push the black tabs located around the perimeter of the clock, toward the center of the clock. Each tab on the clock represents 15 minutes and there must be a tab "out" after each tab that is pushed "in" so the input can reset.

It is recommended that the Hoseless Sludge Collector make a cycle 2 times per hour to start with and should never go more than two hours without running. The sludge must be removed or it will carry over into the plate settlers.

The flow rate is controlled by the sludge valve and will be set by the MRI Service Technician at time of start up. Under normal operation, the Hoseless Sludge collector will remove .5% to 1% solids concentration.

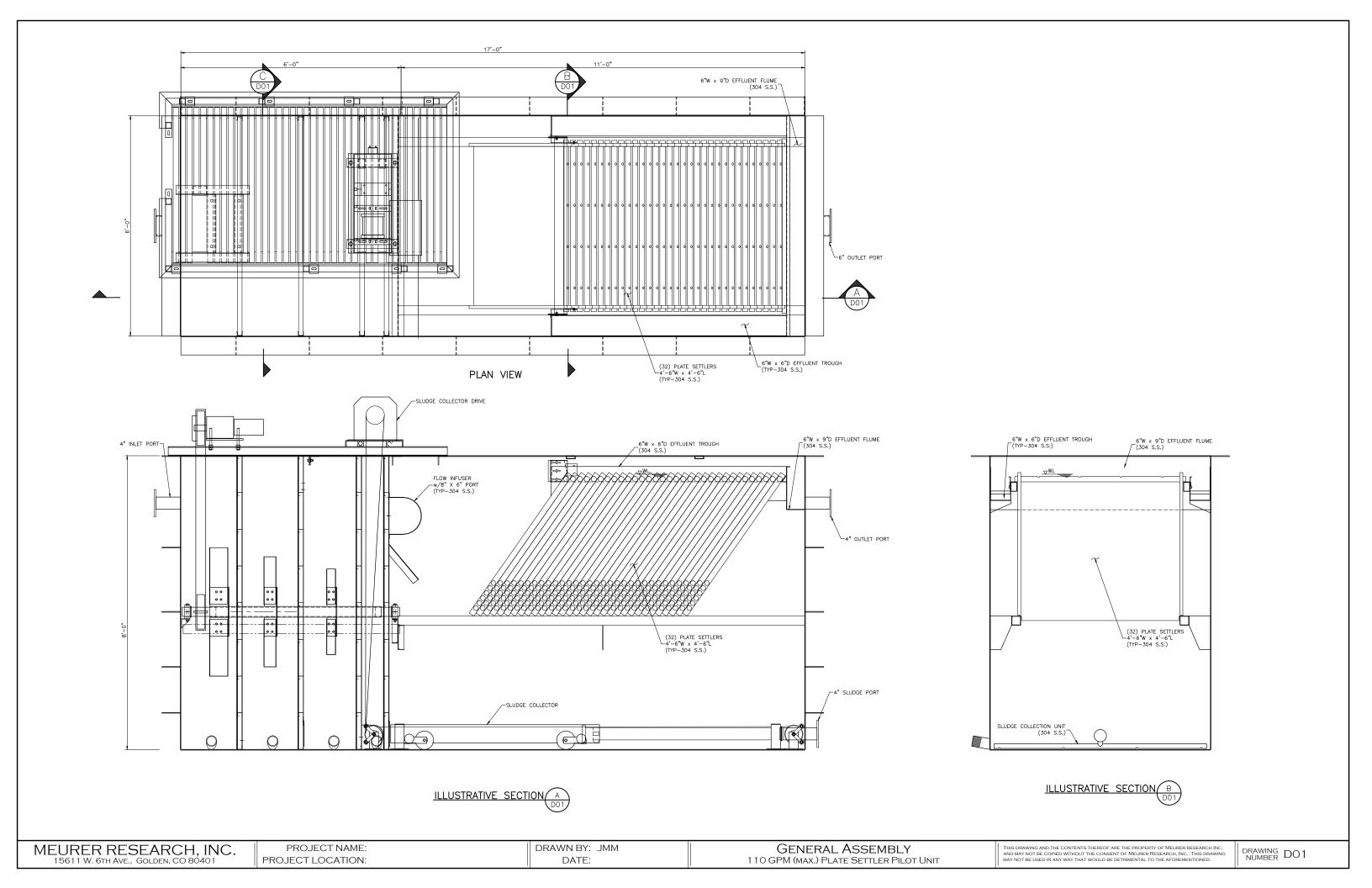
10.0 Maintenance

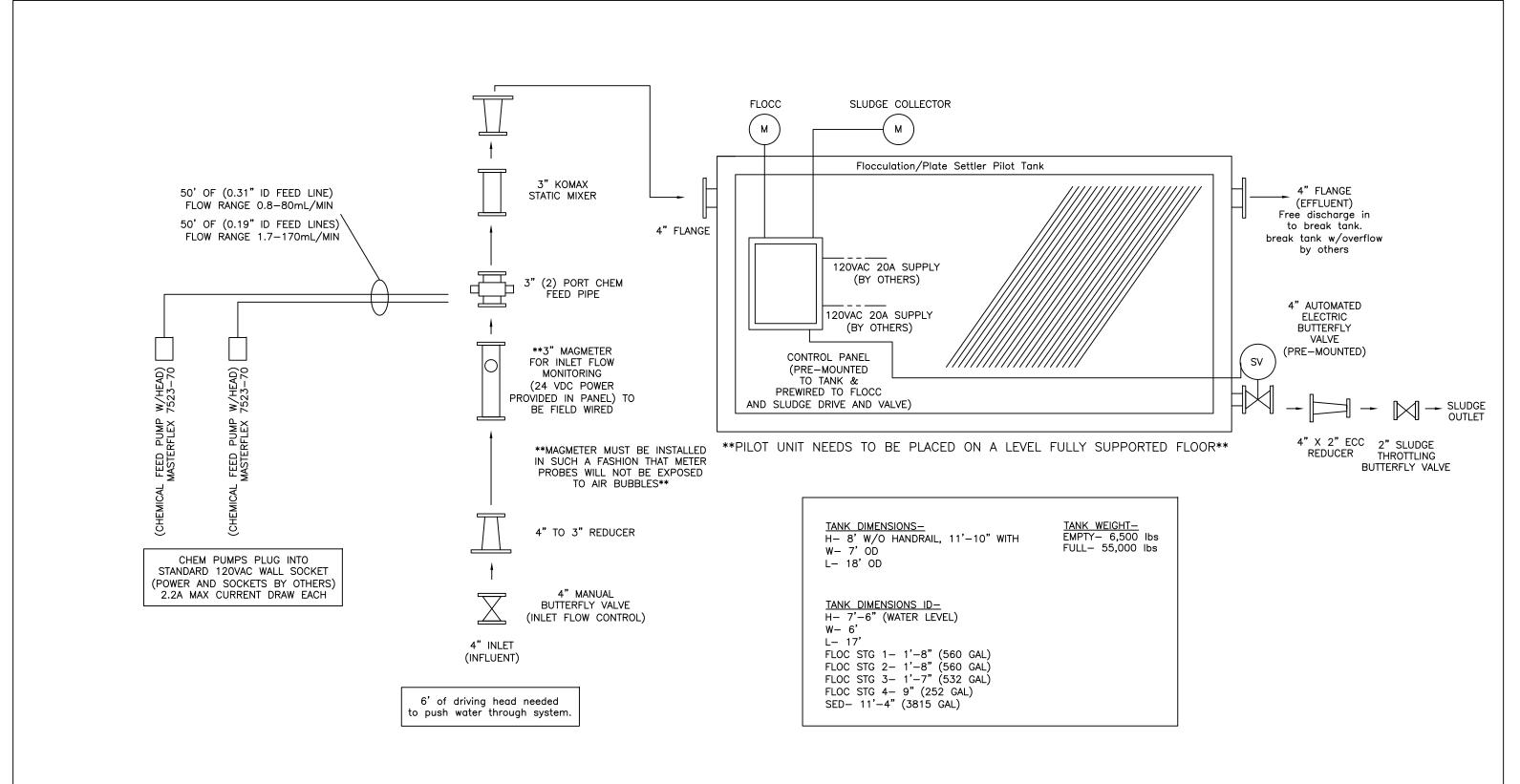
Once per day:

- 1. Observe the operation of the flocculator for proper speed and smoothness of operation.
- 2. Observe the operation of the Hoseless Sludge Collector for proper frequency, smoothness and underflow.
- 3. Observe control panel for alarms.

Once per week:

Check the oil levels in the flocculator gearbox.


11.0 Procedure for after-test shipping


Instructions to shut down for pilot unit:

- Drain tank
 Remove all (5) sludge drain ports
- 2. Hose out any remaining sludge in each section
- 3. Remove handrail, access ladder, flocculator drive cover, sludge collector drive cover and any exterior plastic piping. **Do not** remove decking or the drives themselves.
- 4. Securely cover flocculator drive, sludge collector drive, sludge valve, and control panel with heavy-duty plastic.
- 5. If the tank will be setting for over three days, cover the entire tank with plastic or plywood.
- 6. Secure tank and all loose items to deck of truck Reuse the crate that the loose items arrived in if possible. Use the job specific P&ID as a check list to make sure all equipment is packed up and ready to return.
- 7. Hose out and clean individual piping items before returning.
- 8. Check outside of tank for any loose items.
- 9. This is a rental unit. Please consider the next person who will use the unit.

The client will be charged for any items missing upon the units return.

THESE ITEMS TO BE PIPED IN AT DESIRED LOCATION

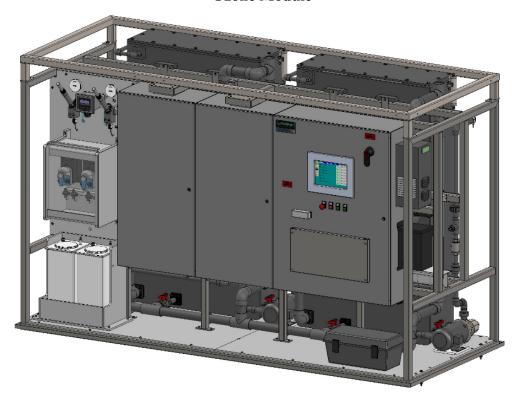
MEURER RESEARCH, INC.

PROJECT NAME: PROJECT NUMBER: PROJECT LOCATION: DRAWN BY: DFB
SCALE: NTS
DATE: 08/20/08

REV 1:

REV 2:

REV 3:



OZONE – INTUITECH

Operations and Maintenance Manual

Carollo Engineers

Ozone Module

Release #1

Prepared By:

Project # 1602

March 21, 2018

TABLE OF CONTENTS

SPECIFICATIONS

1. Ozone Module	5
A. Specifications	5
(1) General	5
(2) Instrumentation	5
(3) Physical	5
(4) Electrical (120V or 240V configurable) Factory Measured	5
INSTALLATION	
1. Ozone Module	6
2. Un-packaging	6
3. Mechanical Inspection	6
A. Initial Visual Inspection	6
B. Leveling	6
C. Component Mounting	6
D. Piping Connections	6
4. Electrical Inspection	7
A. Initial Visual Inspection	7
B. Electrical Connections	7
(1) Control Panel Wiring	7
(2) Customer Feeder Circuit Breaker	7
5. Environmental Protection	7
A. Solar / UV Protection	7
OPERATION	
1. Operation Theory	7
2. Operation Sequence	8
3. Sequence Matrix	8
4. Operation Interface	10
A. General	10
B. Manual Control Panel Operators	10
(1) Indicator Lights	10
(2) Push Button	10
(3) Main Disconnect	10
C. Human Machine Interface (HMI)	10
D. HMI Navigation Icons	11
(1) Overview Button	11
(2) Process Menu Button	11
(3) Trend Menu Button	11
(4) Alarms Button	11
(5) Settings Menu Button	12

(6) V	Veb Browser Button	12
\ /	Log In Button	12
	Keypads	12
	MI Operation	13
	Log In/Out Screen	13
(2) A	Alarm Screens	14
(3) In	nstrument Displays	15
(4) T	Frending Screen and Pen Selection	15
(5) S	Settings Menu Screens	16
(6) I	Data Logging Screen	17
(7) E	Email Alarms Screen	18
(8) I	Date/Time Screen	20
(9) (Overview Screen	20
(10)	Process Menu	21
(11)	System Process Control Screen	22
(12)	Oxygen Generation Control Screen	23
(13)	VFD Quick View Screen	23
(14)	Ozone Generation Control Screen	24
(15)	Ozone Generation Configuration Screen	24
(16)	PID Loop Control Screens	25
(17)	Ozone Generator Screen	27
(18)	Diffuser Flow Screen	28
(19)	Analyzer Zero Screen	29
(20)	Browser	29
(21)	Chemical Pump Configuration Screen	30
(22)	Pace Loop Control Screen	30
(23)	External Analog Input Screen	33
(24)	Control Panel Screen	34
(25)	HMI Alarms and Conditions	34
START	TUP	
1. Pre-	Startup Procedures	43
A. Pı	amp Inspection	43
B. O	pen Process Connections	43
	ll Contactors	43
D. Fe	eed Gas and Off Gas Transmitters Warm-Up	43
E. In	jecting Ozone using the Eductors	43
2. Star	tup Procedures	43
CALC	ULATIONS	
1. Ozo	one Calculations	44
	ransfer Efficiency	44
	heoretical Ozone Dosage	45
	ctual Ozone Dosage	45

SHUTDOWN

1. Shutdown Procedures	46
A. Disconnect Electrical power	46
B. Disconnect Process connections	46
C. Replace Cap on Dissolved Ozone Sensors.	46
D. Draining Equipment	46
F. Secure Loose Parts	46
MAINTENANCE	
1. General	47
2. Maintainable Equipment	47
A. Feed Pump Assemblies (X100, X200)	47
(1) Pump head maintenance	47
(2) Coupling maintenance	47
(3) Stator maintenance	47
B. Feed Gas Transmitter, Off Gas Transmitter (X910, X920)	48
(1) Zeroing	48
C. Dissolved Ozone Sensor	48
(1) Sensor Tip	48
(2) Calibration	48
D. Ozone Destruct (X100, X200, X910, X920)	49
(1) Drain Valve	49
(2) Destruct	49
E. Minimum Maintenance Schedule	50
SAFETY	
1. Safety Information	51
Appendix A- Drawings	

EQUIPMENT SPECIFICATIONS

1. Ozone Module

A. Specifications

(1) General

Flow Rate (per contactor): 2.0...9.0 gpm (7.6...34.1 L/min)

Contactors: 2 @ 133 gal (503 L)

Ozone Delivery: 0.1...6.5 g/h

Chemical Feed Pumps: 3 @ 0.01...21.7 gpd (0.03...57 mL/min)

Chemical Feed Tanks: 3 @ 4 gal (15.1 L)

Max Feed Temperature: 100° F

(2) Instrumentation

Feed flow (per contactor) *

Feed gas (O₂) dew point temperature* Feed gas (O₂) oxygen concentration* Diffuser (O₃) flow (per contactor) * Diffuser pressure (per contactor) *

Feed Gas concentration*
Off Gas concentration*

Dissolved ozone concentration 1*
Dissolved ozone concentration 2*
Ambient ozone concentration*

Chemical tank level*

(3) Physical

Short Assembled Dimensions: 122"L X 50"W X 75.5"H

Dry Weight: Approx. 2,500 lbs.

Wet Weight: Approx. 4,700 lbs.

Volume Between Sample Valves: 4.5 gal

(4) Electrical (120V or 240V configurable) Factory Measured

 Phase:
 1
 1

 Frequency:
 60 Hz
 60 Hz

 Voltage:
 120 VAC
 240 VAC

 Current:
 16.8 A Max
 8.4 A Max

^{*}Data logged

INSTALLATION

1. Ozone Module

2. Un-packaging

The Ozone Module was designed using an integrated shipping crate design. Simply remove the bolts along the top edge of the "crate". As the bolts along the top of each plywood sheet are removed, that sheet can be lifted out of the retention rail along the bottom of the skid and removed. The plywood sheets mounted to the top of the skid are removed in a similar manner. Retain all plywood sheeting and hardware for return shipping. A forklift will be required to lift the crate off of the shipping truck and for final positioning of the pilot module. Ensure that the forklift is rated to safely carry the weight of the equipment (approx. 2500 lbs.).

3. Mechanical Inspection

A. Initial Visual Inspection

Carefully inspect the skid for mechanical damage to the frame, filter vessels, piping, motors, and instruments that may have occurred during the shipping or positioning of the equipment.

B. Leveling

Verify that the equipment is level. Once in position, shim the skids as necessary until the system is level. Each end of the pilot should be level to within ¼ inch of each other. It is important that the module is level to ensure proper operation, since improper leveling can cause the ozone off gas destruct units to flood, rendering them inoperable.

C. Component Mounting

Verify that all components and instruments are secure. These include pipe straps and instrument mounts.

D. Piping Connections

Verify that all PVC piping connections are secure. These include pipe straps, threaded unions, check valves, process valves, and sample valves. Confirm that the process piping connections are installed and tightened. Further confirm that the connections are in accurate alignment and free from any undue stress imposed by connecting piping.

WARNING: Stress imposed by improperly aligned field piping may damage equipment. Ensure all connecting piping is free of undue stress.

WARNING: The 2 inch waste line exiting the pilot module must be piped directly to a floor drain. Do not install any device on this line which could potentially restrict the flow (i.e. valves).

Never cap the weir at the top of the waste overflow piping. This weir must be left open to atmosphere at all times.

4. Electrical Inspection

A. Initial Visual Inspection

Carefully inspect for mechanical damage to the control panels that may have occurred during shipping or installation of the equipment. Excessive vibration from shipping can cause electrical components within the control enclosures to snap off of the din rail and cause damage to other components.

B. Electrical Connections

(1) Control Panel Wiring

Verify that all wires within the control panel are terminated. Vibration from shipping can cause conductors to come loose. Un-terminated wires can short to other components, conductors, or the enclosure wall and cause damage.

(2) Customer Feeder Circuit Breaker

Identify the location of the customer feeder circuit breaker so it can be easily identified and locked-out when servicing of the pilot electrical system.

5. Environmental Protection

A. Solar / UV Protection

Due to the adverse effects of UV light on PVC, it is recommended that equipment operated outdoors is protected from direct sunlight. A full tent (or similar structure) is preferred to provide protection from direct rain and sunlight, as well as blowing dirt and debris.

OPERATION

1. Operation Theory

Module consists of two feed pumps, two contactors, the oxygen concentration enclosure, ozone generation enclosure, and the system control panel enclosure. The feed flow is controlled automatically using PID tuning. The contact chambers have 19 volumetrically-spaced ports for sampling dissolved ozone. The ozone generator is air-cooled with an integral oxygen concentrator for creating ozone from ambient air and shuts down automatically if a leak is detected. Gas analyzer zero calibration can be performed either automatically (based on runtime) or manually. (Ozone delivery to the contactors is not interrupted during a zero calibration.) Ozone gas delivery can be accomplished through inline eductors or porous ceramic diffusers in the contactors. Other features include a Bluetooth capable HMI, automatic data logging of key parameters and remote monitoring and control using a standard web browser (if web-enabled).

With the exception of the manually actuated valves, the equipment is monitored and controlled by an HMI (Human Machine Interface). The HMI communicates with the PLC (Programmable Logic Controller) in the control panel that monitors and controls various instruments and components. In other words, the operator monitors the equipment through the HMI, which interacts with the PLC, which activates the various equipment components.

2. Operation Sequence

The equipment follows a sequence of operation as summarized in the Sequence Matrix. The sequence matrix depicts the portion of the control logic that energizes pumps, valves, and other components required for each step of the operation. The PLC advances from step to step based on either an elapsed time or a specific event. A thorough understanding of the sequence matrix is essential to properly understand the equipment's operation.

Each step in the operation sequence has a number and description. The "field devices" section of the table shows which equipment components are activated in any given step. The "condition" column defines the events or time requirements for advancing from step to step. The "go to step" column indicates which step the equipment will be advancing to after the conditions or time requirements have been met in the given step. Finally, the legend defines the terminology used in the matrix.

The equipment is always in one of five stages of the operation sequence: offline, warm-up, service, zeroing or shutdown. The offline and service steps correlate to steps "0" and "7" respectively, while the warm-up sequence encompasses steps 1-3 and zeroing contains steps 4-6. The shutdown purge is step 8. An identical sequence is used to control the system while operating on an external oxygen supply (steps 9 through 16).

The equipment follows the "step advance" criterion, for example, the first step in the operation sequence is "0". Step "0" is described as OFFLINE. The "field devices" section of the matrix indicates that during the OFFLINE step, none of the equipment's components are activated (all valves are closed, all pumps are off), but the feed pump is still enabled. Therefore, the feed pump can still be operated in the auto mode even though the ozone system is offline. The "step advance" column informs that the equipment will stay in step "0" until the conditions of EVENT 1 are met. The legend defines EVENT 1 as "operator depresses the online button". When the equipment is switched to "online", the conditions of EVENT 1 are met and the "step advance" criteria states that the equipment will advance to step "1". Step "1" is described as WARM UP – PRESSURE CHECK. The "field devices" section defines which components are activated during the step. The equipment will continue in step "1" until EVENT 2 occurs (indicating the feed gas pressure has reached an allowable start-up limit). Once EVENT 2 occurs the "go to step" column states that the equipment will advance to step "2". Step "2" is another event driven step. This time the programming is checking for a minimum allowable flow rate before progressing onto step "3". Step "3" is a time-based step designed to allow the ozone generator reactor to purge any moisture. Once the allotted time has elapsed, the system progresses to step "4" and enters a zeroing cycle to zero the feed and off gas ozone analyzers.

The zeroing sequence consists of three time-based steps allowing the analyzers to purge with ozone free gas for several minutes before initializing the zero calibration. Once the zeroing process is complete, the ozone system will enter into service.

3. Sequence Matrix

STEP NUMBER	STEP DESCRIPTION	CONDITION	OV AN GO TO STEP	OZONE FEED PUMP X100	○ OZONE FEED PUMP X200	α CHEMICAL	4 CHEMI	5 CHEN	6	7 CO	8	9	10	11 0 X	12	13 R. O.	14 Q	15 X9	16 X9. FB	17 P <u>X</u>	18 ≶ X	19 X X	20 V X	21 X O	22
NUMBER 0	STEP DESCRIPTION	NOILIGNOO	GO TO ST	OZONE FEED PU	OZONE FEED	CHEMICAL	CHEMI	CHEN		COI			C X	S S		Q.	유	6X 3-3	797 133	ρX	Ş X	% X	D X2	χ	
			ЕĀ	MP X100	PUMP X200	CHEMICAL FEED PUMP X710	CHEMICAL FEED PUMP X720	CHEMICAL FEED PUMP X730		COMPRESSOR X800			X100 FEED GAS FLOW CONTROLLER FIC-X910	X200 FEED GAS FLOW CONTROLLER FIC-X920		OZONE GENERATOR X900 REACTOR	OFF GAS SAMPLE PUMP X920	FĒĒD GAS ZEROING VALVE DV- X903	FEED GAS SAMPLE VALVE DV- X913	X100 DIFFUSER ISOLATION VALVE	X200 DIFFUSER ISOLATION VALVE DV-X941	X100 OFF GAS SAMPLE VALVE DV- X951	X200 OFF GAS SAMPLE VALVE	OFF GAS ZEROING VALVE DV- X953	OZONE TRANSMITTER ZERO COMMAND
1	OFFLINE	EVENT 1	1																						
1	WARM UP - PRESSURE CHECK	EVENT 2	2	Е	Е					Х														Х	
2	WARM UP - FLOW CHECK	EVENT 3	3	Е	Е					Х			Е	Е			Х			Е	Е			Х	
3	WARM UP - GENERATOR PURGE	TIM E 1	4	Е	Е					Х			Е	Е			Х			Е	Е			Х	
4	ZERO - PURGING	TIM E 2	5	Е	Е	Е	Е	Е		Х			Е	Е		Х	Х	Х		Е	Е			Х	
5	ZERO - INITIATE	TIME3	6	Е	Е	Е	Е	Е		Х			Е	Е		Х	Х	Х		Е	Е			Х	Х
6	ZEROING	TIM E 4	7	Ε	Е	Е	Е	Е		Х			Е	Е		Х	Х	Х		Е	Е			Х	
7	SERVICE	EVENT 4	0,4,8	Е	Е	Е	Е	Е		Х			Е	Е		Х	Х		Х	Е	Е	Е	Е		
8	SHUTDOWN - PURGING	TIME	0	Е	Е					Х			Е	Е			Х	Х		Е	Е			Х	
9 V	WARM UP - PRESSURE CHECK W/EXT 02	EVENT 2	10	Е	Е																			Х	
10	WARM UP - FLOW CHECK W/EXT 02	EVENT 3	11	Ε	Е								Е	Е			Х			Е	Е			Х	
11 W	VARM UP - GENERATOR PURGE W/EXT 02	TIM E 5	12	Е	Е								Е	Е			Х			Е	Е			Х	
12	ZERO - PURGING W/EXT 02	TIM E 6	13	Е	Е	Е	Е	Е					Е	Е		Х	Х	Х		Е	Е			Х	
13	ZERO - INITIATE W/EXT 02	TIM E 7	14	Е	Е	Е	Е	Е					Е	Е		Х	Х	Х		Е	Е			Х	Х
14	ZEROING W/EXT 02	TIM E 8	15	Е	Е	Е	Е	Е					Е	Е		Х	Х	Х		Е	Е			Х	
15	SERVICE W/EXT 02	EVENT 4	0,11,16	Е	Е	Е	Е	Е					Е	Е		Х	Х		Х	Е	Е	Е	Е		
16	SHUTDOWN - PURGING W/EXT O2	TIME	0	Е	Е								Е	Е			Х	Х		Е	Е			Х	
17	SERVICE - PUM P ONLY	EVENT 4	0	Е	Е	E	E	Е																	
						<u> </u>																			Щ
V 10	DENI OD DLININIO				LEC	GENI	<u> </u>																		_
	PEN OR RUNNING NABLED																								-
	M E SETPOINT																								_
	LOW SETPOINT																								-
	PERATOR DEPRESSES THE "ONLINE" BUTTO	ON																							
	EED GAS PRESSURE EXCEEDS MINIMUM ST		RESHOLD																						
	EED GAS FLOW RATE EXCEEDS MINIMUM S																								_
EVENT 4 OF	PERATOR DEPRESSES THE "OFFLINE" OR "Z	ZERO" BUTT	ON OR THE	ENTE	RED	RE-Z	ZERO	INTE	RVA	L HAS	S ELA	PSE).												_

4. Operation Interface

A. General

The system is operated from the front of the control panel. The operating controls consist of:

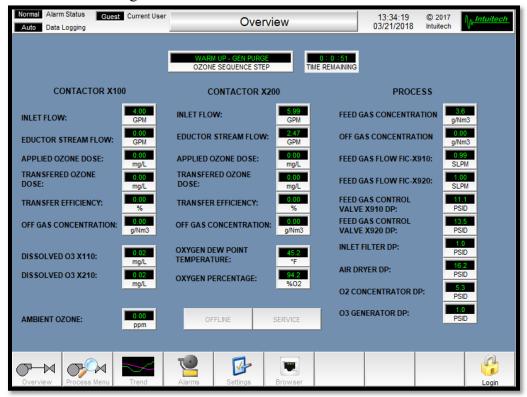
- HMI
- Three indicator lights
- Emergency stop button
- Main disconnect switch

B. Manual Control Panel Operators

(1) Indicator Lights

- **ON** (Green) indicates that the equipment is operating.
- ALARM (Red) indicates that an alarm is present.
- **POWER ON** (White) indicates power is present inside the control panel.

(2) Push Button


• EMERGENCY STOP- will stop all equipment operations. NOTE: Rotate clockwise to disengage or reset.

(3) Main Disconnect

Will disconnect main power to equipment.

C. Human Machine Interface (HMI)

When the equipment is powered up the initial HMI screen that appears will be similar to the following screen.

D. HMI Navigation Icons

The following navigation icon buttons displayed along the bottom of the screen throughout the HMI application provide the following functions:

(1) Overview Button

The overview screen displays a summary of data from the process screens.

(2) Process Menu Button

The monitoring and control of all automated system components is accessed through the process menu. Some of the process screens are monitoring only, some are control only, and some are for both monitoring and control of system components. For operational ease, the display of some instrument values may appear redundantly on two or more screens.

(3) Trend Menu Button

The trend menu allows the operator access to trending screens to analyze and view in a graphical format, the data coming from the system instruments.

(4) Alarms Button

The alarm button is used to view the currently active alarms (Alarm Summary). The historical alarms screen (Alarm History) can be accessed from within the alarm summary.

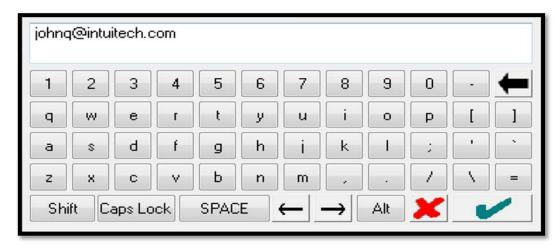
(5) Settings Menu Button

The system menu includes buttons to access data logging, e-mail alarms, and the miscellaneous screen. The miscellaneous screen is for setting and configuring various operational features.

(6) Web Browser Button

The web browser button provides access to a built in web browser embedded into some instruments. Calibration and configuration can be performed through these screens.

(7) Log In Button


This icon displays a screen that allows the user to log in and out of different user levels. A password is required. Operators are required to log in with a username and password before system operation is possible.

(8) Keypads

There are two different keypads which can be selected by an operator. The simple keypad allows the operator to enter in numerical control values and other information.

NOTE: If the component has an operating range, it will be displayed at the bottom of the keypad - any value entered must fall within that range.

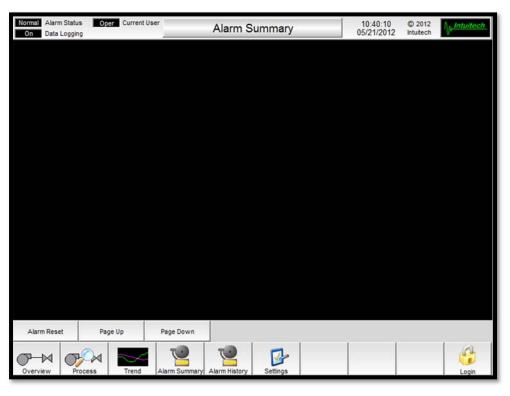
The full keypad is displayed anytime alpha-numeric characters are required. Each keypad is displayed when required.

E. HMI Operation

(1) Log In/Out Screen

By selecting the Login icon, the login screen is displayed.

Select the desired level of access (Administrator, Engineer, Operator, Guest, or View) from the drop-down box. Then, select the PASSWORD box and type the appropriate password. Select LOGIN when done. If your login is successful, the new login level will be displayed in the upper left corner of the screen. For security purposes, the passwords



for each user level will not be printed in this manual. (Password information will be sent with the manual in a sealed envelope.) Select the LOGOUT button to return to the Guest level of access. Below are the five user levels and what functions each user has access to. Some activities may not be relevant for all HMI applications.

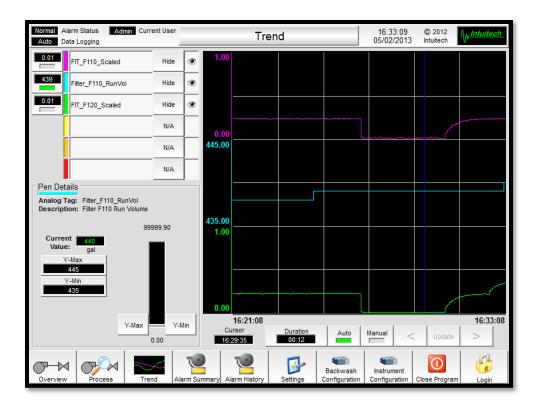
HMI Security Level Access Permissions										
	Guest	View	Operator	Engineer	Administrator					
View Login Screen	Х	Х	Х	Х	Χ					
View Process Screens	Х	Х	Х	Х	Х					
View Trends		Х	Х	Х	Χ					
View Alarms		Х	Х	Χ	Χ					
Reset Alarms			Х	Х	Х					
Control Pumps, Valves, Blowers, etc.			Χ	Χ	Х					
Modify Email Alarms Email Settings					Χ					
Disable/Enable Email Alarms				Χ	Χ					
Change Auto and Manual Setpoints			Х	Χ	Χ					
Initiate Sequencer Steps			Х	Х	Χ					
Change Sequencer Step Times			Х	Х	Χ					
Change PID Setpoints				Х	Χ					
Change PID Running Parameters				Х	Χ					
Change Alarm Limit Setpoints				Х	Χ					
Change Data Logging				Х	Χ					
Set Date and Time				Χ	Χ					
Close Program					Χ					

(2) Alarm Screens


The date, time, and description of alarms will be displayed on the alarm screens. Once the conditions that triggered the alarm have been corrected, select the ALARM RESET button to acknowledge and reset all current alarms. Scroll through the alarms by selecting the PAGE UP and PAGE DOWN buttons on either of the alarm screens.

(3) Instrument Displays

Each analog instrument has its own display screen. Access this screen by selecting the display button. Once selected, a similar screen will appear.



This screen will allow the user to set any high or low alarm limits associated with the instrument, as well as view a "quick-trend" of its recent activity. To add this analog signal to the main trending screen, simply press "Load" on one of the open Trend Pens.

(4) Trending Screen and Pen Selection

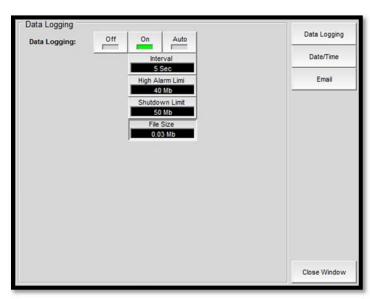
The trend menu allows the operator access to the trending screens to analyze and view, in graphical/numerical format, the data coming from the system's instruments. When selected, a similar screen will be displayed

The time period displayed on the trending screen can be adjusted by selecting the desired time in hours and minutes on one of the TREND DURATION icons.

The AUTO selection allows users to view real time trends, while the MANUAL selection is for historical trends. An automatically updated trending screen will continually update itself. The manual update trending screens display a static "snapshot" of information and will not automatically update.

If an analog signal is already selected, it will be displayed and can be manipulated from the upper-left corner of the trend screen. Each pen can either be viewed, or hidden using the VIEW/HIDE buttons. Once a pen is selected, the size of the Y-axis can be adjusted in the "Pen Details" section.

NOTE: In order to add a new analog signal to the trending screen, it must be activated from within its own display screen (as previously described).


Tap the screen at any point within the trend graph to move the vertical cursor (or select the < or > buttons to enact small moves). The color of the parameter at the top left of the screen corresponds with the color of the trend lines within the trending screen. The parameter value shown in the "Current Value" window, corresponds to the value on the graph at the position of the cursor.

(5) Settings Menu Screens

The settings menu includes buttons to access data logging, e-mail alarms, and the date and time set screen.

(6) Data Logging Screen If the DATA LOGGING button is selected the following screen is displayed.

To operate data logging in automatic mode, select the AUTO button. To set the interval at which the process parameters are recorded, activate the keypad by pressing the interval button and enter the desired interval (in seconds).

When in the automatic

mode, the data-logging feature is only active when the system is active (i.e. data are only logged for equipment in operation).

To operate data logging in manual mode, select the ON button. In manual mode data are collected whether the system is running or not.

Selecting the OFF button will disable all data logging.

Data is stored on a removable USB flash drive located on the front of the control panel door plugged into the programming port. It is NOT necessary to open the

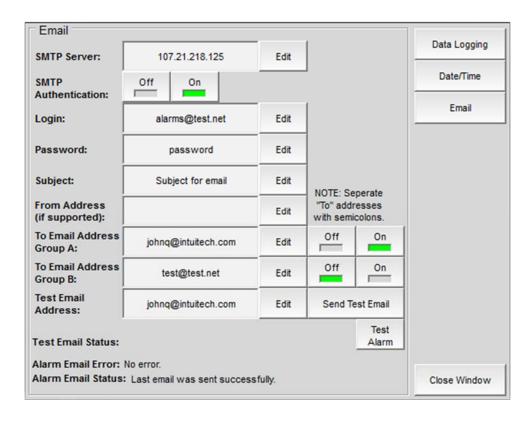
control enclosure to access this drive. It is recommended that the HMI is shut down to remove the USB data drive. The data files can then be copied or moved from the USB flash drive to another computer for viewing. Data files are stored on the USB drive as .csv (comma separated variable) files, which can be opened with and saved as Microsoft® ExcelTM (.xlsx) files. The .csv files contain data columns with integrated column

headers. The first column in the .csv files correlates to the date and time the data were collected.

A second USB drive, located on the back of the HMI is used as a backup to the primary USB drive. This drive automatically logs data every five minutes. To gain

access to this drive, the enclosure door will have to be opened. Disconnect power before opening the enclosure door to avoid potential electrical shock. There are two USB "drives" plugged into the HMI. The silver "Intuitech" USB drive is the backup drive. The USB drive that is BLACK is the hard key for the software license. DO NOT REMOVE THE BLACK USB DRIVE as this will invalidate the software license.

ATTENTION: HOW MUCH DATA ARE YOU WILLING TO LOSE? Data should be retrieved and backed up on a separate computer regularly. How often this is performed should be based upon the amount of data loss you are willing to accept.


DANGER: Disconnect power to control panel before servicing to eliminate electrical shock and arc flash hazards. The white "Power On" light on the front of the control panel indicates power is present in the panel.

Once the USB flash drive is reconnected to the HMI, the data files will continue to append to the previously existing data (if files were copied to the computer in the previous step) or new files will be created (if the files were removed in the previous step).

When the size of the file exceeds the entered "High Alarm Limit" (in Mb), an alarm will be annunciated (indicating "Total Data File Size High"). Since large text files can become virtually unmanageable, it is recommended that the operator clears or moves the saved data in the data-logging file before they become larger than 30 Mb. If the file size becomes greater than the "Shutdown Limit", an alarm will be activated indicating "Data Logging Stopped". At this point the data logging feature will shut down.

(7) Email Alarms Screen

<u>ATTENTION:</u> Due to the complex nature of email security, corporate firewalls and variable service providers, email alarm indications may not be reliable. Intuitech makes no claim as to the functionality or reliability of email alarm notifications.

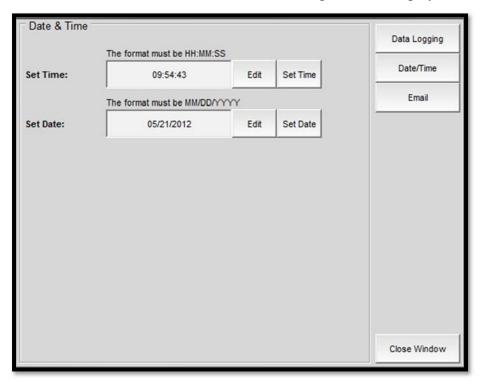
The HMI has the ability to send all alarm notifications to specified email addresses. The email notifications include the time and date of the alarm as well as the message generated by the alarm.

Administrator login is required to view or modify the SMTP Server IP, SMTP Authentication, Username, Password, Mail from Address, and Mail to Address 1. Without administrator login, these fields will be displayed as asterisks and cannot be accessed.

MAIL TO ADDRESS GROUP B

This field is identical to "Mail to Address Group A" except the administrator level of login is not required to modify the field. Specify any valid email address or multiple addresses separated by a semicolon (;). This can include cell phone email address (e.g. 8015551212@domain.com). Any alarms that occurred prior to email address changes (i.e. in the queue) will be sent using the old data. Messages are sent from the queue at 1-minute intervals.

TEST EMAIL

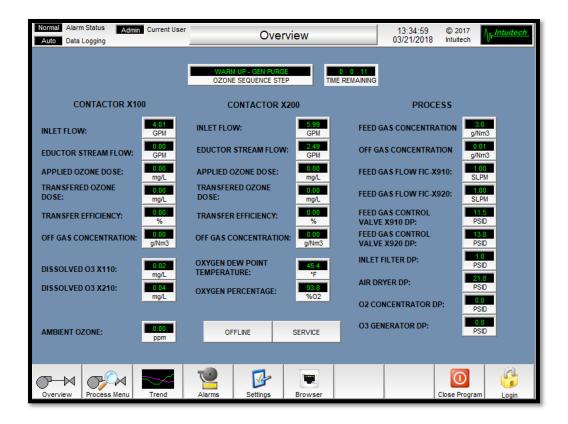

This field is provided to easily test the function of the email screen. Pressing the "Send Test Email" button will send a test email to the email address configured to its right. Pressing the "Test Alarm" button will generate a test alarm and send the email to everyone in Group A and Group B (as long as the group control is set to ON).

MAIL ERROR STATUS

This indicates the status of the last email attempt. If it reads "No error." then the last email was sent successfully. If other errors appear they will be similar to those most mail clients report when there is a failure. Please consult your network administrator if additional assistance is required.

(8) Date/Time Screen

If the Date/Time button is selected the following screen is displayed.

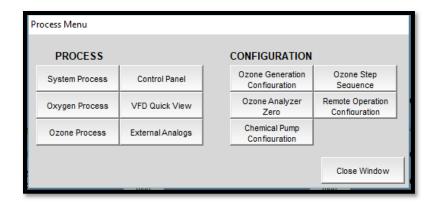


The SET TIME and SET DATE buttons are used to set the current time and date. Use "Edit" to enable the keypad and enter the proper time or date. Once the correct time has been entered, press "Set Time" to move that time into the HMI memory.

NOTE: Ensure that the time and date are entered in the <u>exact format</u> as displayed. Include the necessary symbols (i.e. colon and slash marks) when entering in the time and date or the entry will be rejected.

(9) Overview Screen

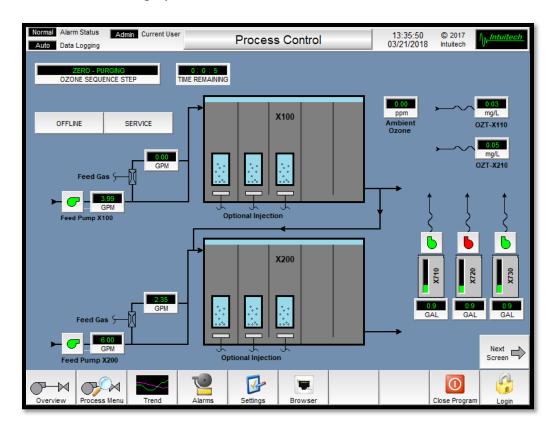
When the OVERVIEW button is selected, a similar screen is displayed.



The screen displays a summary of data from all the process screens for the equipment. The system control buttons are used for energizing or de-energizing the equipment. Pressing the SERVICE button will initiate the warm-up sequence, zero the ozone gas analyzers and put the generator into service (as described in the sequence matrix). Pressing the OFFLINE button will start the purge step and shut the equipment down.

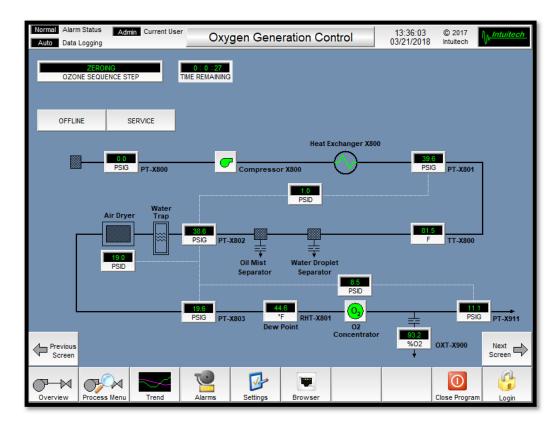
NOTE: See the Ozone Calculations and Control section below for information on how the ozone dosage and transfer efficiency is calculated.

(10) Process Menu


When the process menu button is selected a process menu screen similar to the one below is displayed.

The process menu allows access to screens used for monitoring/controlling different processes and components of the equipment.

(11) System Process Control Screen


When the SYSTEM PROCESS control button is selected a process screen similar to the one below is displayed.

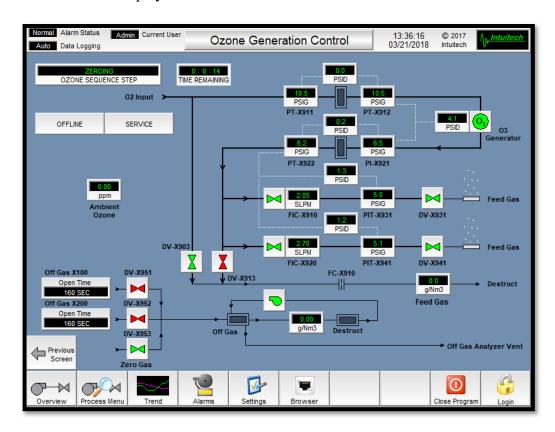
The system process control screen allows access to screens used for the monitoring and controlling of the feed pumps and chemical pumps on the ozone module. Feed pump flow rates and chemical dosages are set within their respective pump controls.

(12) Oxygen Generation Control Screen

When the OXYGEN PROCESS control button is selected a process screen similar to the one below is displayed.

The Oxygen process screen provides access to all of the components used to generate and monitor oxygen production. Differential pressures are displayed for all components and filters to provide warning in case of potential problems. Feed gas dew point temperature and oxygen concentration are also monitored and displayed here.

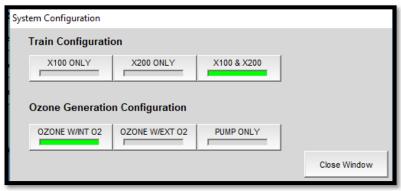
(13) VFD Quick View Screen


The VFD quick view screen displays an overview of the feed pump VFD condition. Motor voltage, current, torque and accumulated thermal state are displayed and recorded to historical trending. For more detailed

information about the VFD, consult the Browser screen.

(14) Ozone Generation Control Screen

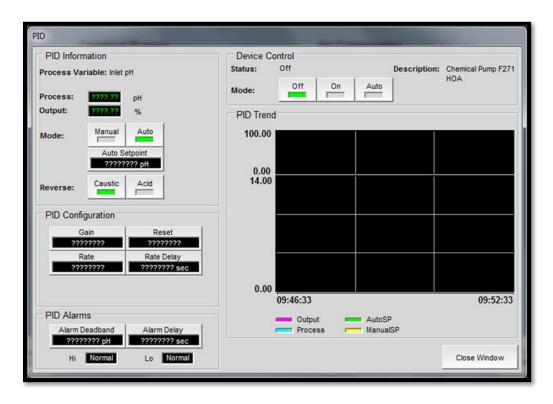
When the OZONE PROCESS control button is selected a process screen similar to the one below is displayed.



The Ozone process screen provides access to all of the components used to generate, control and monitor ozone production. Inlet, outlet and differential pressures are displayed for all components. Ozone dose is adjusted using the flow control valves FIC-X910 and FIC-X920, while the feed gas concentration is set in the ozone generator.

(15) Ozone Generation Configuration Screen

If the OZONE GENERATION CONFIGURATION button is selected, a similar screen will be displayed.


This screen is used to select which of the two trains will be put into operation, and whether the oxygen and ozone generation systems will be used during operation. When set to "Ozone

W/ Internal O2", the on-board oxygen generation system will be used to generate ozone and will shut down if there is a failure in the oxygen generation system or the ozone generation system. When set to "Ozone W/ External O2", ozone will be generated using an external oxygen source (such as an oxygen bottle), and the system will not shut down if there is a failure in the oxygen generation system. In "Pump Only" mode, only the feed pump turns on during service and the system will not shut down if a component in the oxygen or ozone generation panels fails.

(16) PID Loop Control Screens

If any component (i.e. pump) using a PID control is selected, a similar screen is displayed.

NOTE: All module components which operate using PID control (listed below) will be controlled by a screen very similar to this one.

This screen displays important monitoring parameters, buttons for selecting control options, buttons for selecting auto or manual mode operation, and value input buttons for entering the auto and manual set-points.

The DEVICE CONTROL buttons (in the upper right corner) designate what conditions cause the pump to energize. Pressing the AUTO control button will allow the pump to be controlled automatically by the sequencer. Pressing the OFF or ON control buttons will energize or de-energize the pump manually, independent of the sequencer.

The MODE buttons (auto or manual) designate which setpoint the pump will maintain. When the mode is set to AUTO, the pump will seek the auto setpoint (using the PID control loop). When set to MANUAL, the pump will simply maintain the manual setpoint (a percentage of the pumps maximum flow, with no flow control).

The PID Configuration section contains the tuning parameters for the pump control. The gain, reset, and rate values function as the tuning parameters for the PID control loop. The Proportional–Integral–Derivative (PID) controller is a generic control loop feedback mechanism used to control equipment and maintain a setpoint. The PID controller attempts to correct for the discrepancy between a measured process variable and a desired setpoint by calculating and outputting a corrective action in order to adjust the process accordingly.

The PID controller calculation (algorithm) involves three separate parameters; the Proportional, the Integral and Derivative values (i.e. gain, reset, and rate, respectively). The Proportional value determines the reaction to the current error, the Integral determines the reaction based on the sum of recent errors and the Derivative determines the reaction based on the rate at which the error has been changing. A weighted sum of these three actions is used to adjust the process via a control element (such as the position of a control valve).

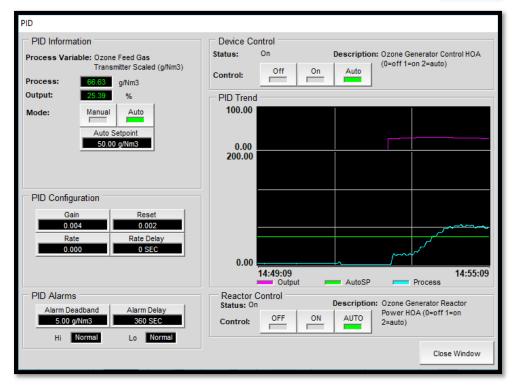
NOTE: The PID gain, reset, rate, and rate delay values for the feed pump and backwash pump are pre-tuned by the manufacturer and should not require further adjusting. Only qualified personnel should adjust values if it becomes necessary. <u>Before</u> adjusting, record the current values to use as a reference.

The PID ALARMS section contains the alarm deadband and alarm delay values, which define the conditions for the High and Low alarms. The alarm deadband delineates how much the process variable may vary before an alarm occurs. The alarm delay defines the time limit (in seconds) for how long that variable can remain out of range before an alarm occurs.

For example: Using a flow rate of 1.25 gpm, an alarm deadband value of 0.5 gpm and an alarm delay value of 60 seconds; if the flow rate fluctuates above 1.75 gpm or below 0.75 gpm for longer than 60 seconds, an alarm will occur.

NOTE: Chemical pumps have the ability for PID control to maintain dissolved ozone, or Pace control to maintain a set chemical dose.

Similar screens exist for the following PID controlled components on the pilot:


- Feed Pump X100
- Feed Pump X200

- Chemical Pump X710
- Chemical Pump X720
- Chemical Pump X730

(17) Ozone Generator Screen

If the GENERATOR X900 button is selected the following screen is displayed.

The screen displays important monitoring parameters, buttons for selecting control options, and an input button for entering generator setpoints.

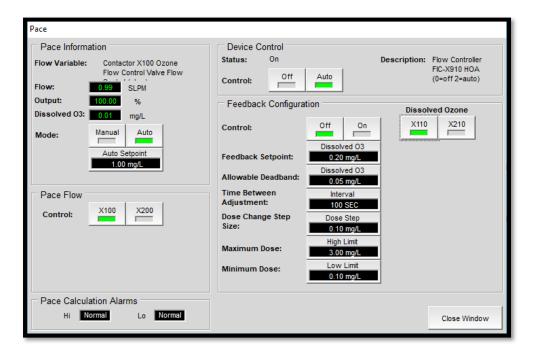
The Control buttons designate what conditions cause the generator control loop to energize, while the Reactor Control buttons actually provide power to the generator reactor. The default setting for this feature is AUTO. This will allow the generator to be controlled automatically by the sequencer from the Overview Screen. Pressing the OFF or ON control buttons will energize or de-energize the generator manually (independent of the Overview Screen system control buttons).

The Mode buttons dictate which setpoint the generator will maintain when energized. When set to MAN, the pump will seek the MANUAL SETPOINT (only displayed when Manual is selected). When set to AUTO, the generator will maintain the AUTO SETPOINT.

The manual setpoint designates the percentage of the generator's maximum output (%), which the generator will maintain when energized under manual Mode.

The auto setpoint designates the ozone concentration (in g/Nm3) the generator will maintain when energized under auto control.

NOTE: To disable ozone generation completely, set the MANUAL SETPOINT to zero (0%).


(18) Diffuser Flow Screen

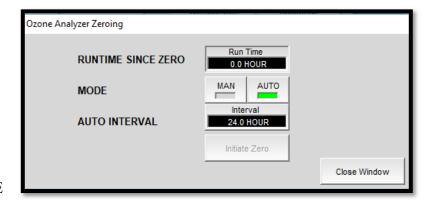
If the DIFFUSER FLOW button is selected (right) the following screen is displayed.

The diffuser flow screen displays the current diffuser flow rate and the input buttons for controlling the ozone gas flow rate.

The gas flow rate is displayed in SLPM (standard liters per minute), indicating that the flow rate has already been normalized to the gas temperature and pressure.

Similar to the PID control screens, the flow control valves have both a MANUAL SETPOINT (in SLPM) and an AUTO SETPOINT in ozone dose (mg/L). See the calculation section below for information on how dose is calculated.

NOTE: During the ozone analyzer zero sequence, the feed gas flow rate will be held constant to ensure the zeroing process does not interrupt ozone delivery to the contactor. The feed gas flow control will remain constant both during, and for 30 seconds after an analyzer zero.

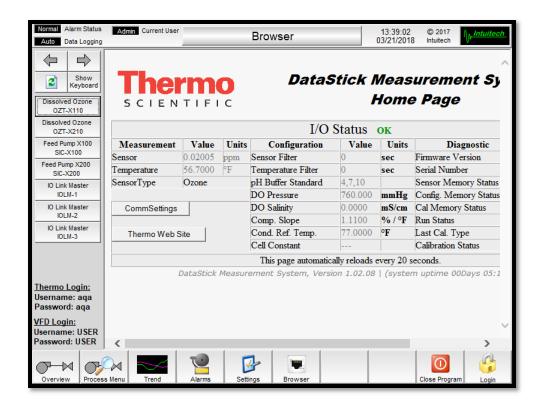

In addition to the PID control, the feed flow controllers have the ability to "trim" to a dissolved ozone concentration. This Feedback Configuration can be enabled or disabled using the control buttons in the Feedback Configuration section. In simple terms, the trim function will look at a dissolved ozone SETPOINT and determine if the actual dissolved ozone is within an ALLOWABLE DEADBAND of that setpoint. If it is not, then the function will increase or decrease the dose (AUTO SETPOINT)

by a defined STEP SIZE and then wait for a set amount of TIME before re-evaluating whether the dissolved ozone is now within the allowed DEADBAND of the setpoint. This will continue until the dissolved ozone concentration falls within specification. A MINIMUM and MAXIMUM DOSE range is included to ensure the dosage stays within acceptable limits.

(19) Analyzer Zero Screen

If the ANALYZER ZERO button is selected the following screen is displayed.

The analyzer zero screen displays the buttons for controlling how and when the feed gas and off gas ozone analyzers will perform a zero calibration.


If the zeroing MODE is set to AUTO, then

the INITIATE ZERO button is disabled and the analyzers will zero based on the AUTO INTERVAL and the RUNTIME SINCE ZERO will display an increasing runtime. When this runtime timer is equal to the AUTO INTERVAL, then the feed and off gas ozone analyzers will perform an automatic re-zero sequence (and the runtime counter will reset).

If the zeroing MODE is set to SEMI, then the INITIATE ZERO button is enabled and the operator can perform a re-zero anytime the system is in service, by pressing the ZERO button. In SEMI MODE the analyzers will <u>ONLY</u> re-zero when the ZERO button is pressed.

(20) Browser

If the BROWSER button is selected, a screen similar to the following is displayed.



The dissolved ozone sensors, the feed pump VFDs and the IO Link Masters are equipped with internal web browser pages. To access them, press one of the sensor buttons along the top edge of the screen. Most browser pages are designed to display diagnostic information. However, instrument calibration for the dissolved ozone sensors will be accomplished through these screens. See Maintenance Section for more detailed information about calibration.

(21) Chemical Pump Configuration Screen

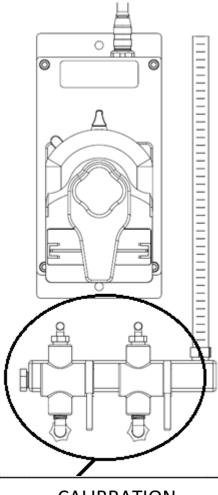
If the CHEMICAL PUMP CONFIGURATION SCREEN is selected, a similar screen is displayed.

This screen contains the configuration buttons for the chemical pumps. In PID mode the pump will maintain an ozone residual. In pace mode it will maintain a defined chemical dose.

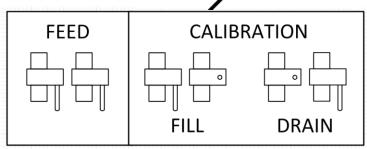
(22) Pace Loop Control Screen

If any component (i.e. chemical pump) using a Pace control is selected, a similar screen is displayed.

NOTE: All module components which operate using Pace control (listed below) will be controlled by a screen very similar to this one.


The screen displays monitoring parameters, control buttons, buttons for selecting auto or manual mode, auto and manual setpoint values, buttons for selecting which flow the pump will pace from (if applicable), along with; the solution concentration setpoint, and pump min/max set-points.

The <u>Device Control</u> buttons designate which conditions will cause the pump to energize. The <u>Mode</u> buttons designate which setpoint the pump will maintain.


NOTE: The auto setpoint is entered in units of milligrams of chemical, per liter of water (feed flow through the module).

Pump Calibration:

To calibrate the pump for operation in auto mode, the flow capacity of the pump must be measured and entered. First, set the valve positions to FILL. Next, switch the pump mode to manual by selecting the MAN button. To determine the pump's maximum flow, access the manual setpoint keypad and enter 100%. Press the ON control button and operate the pump until the graduated cylinder is full of the chemical to be dispensed (make a note of the current chemical level). Next, set the valve positions to DRAIN and energize the pump for at 100% for 1 minute. After 1 minute of pumping, de-energize the pump and measure (in milliliters) the amount of chemical pumped from the graduated cylinder- enter this amount as the Pump Max setpoint. To determine the pump's minimum flow, repeat the process by operating the pump at the minimum manual setpoint percentage of 3% for one minute and measuring the chemical pumped. Enter this amount as the Pump Min setpoint. Repeat the process for each pump used.

Enter the solution concentration of the chemical being pumped (units are in pounds of chemical per gallon of solution). Once calibration is complete, set the valve positions back to FEED.

Concentration Example:

A utility uses 40% FeCl3 with a "neat" or "product" density of 11.7 lbs/gal.

If they express their dose as active FeCl3: FeCl3 active portion in product = 40% Chemical Conc = 40% * 11.7 lbs/gal Chemical Conc = 4.68 lbs/gal

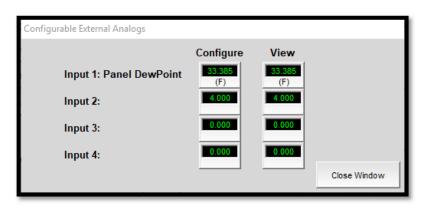
If they express their dose as Fe+3: Fe+3 active portion in product = 13.7% Chemical Conc = 13.7% * 11.7 lbs/gal Chemical Conc = 1.60 lbs/gal The "neat" or "product" consumption is calculated and expressed in both gallons per day and in mL/min on the HMI.

NOTE: If an auto dosing setpoint is selected which the equipment is not able to achieve, a "calculation high" or "calculation low" indication will appear.

ATTENTION: If the chemical pump experiences a fault, the Pump Fault Alarm will be annunciated. **In addition to pressing the Alarm Reset button, it is necessary to cycle power to the pump in order to clear the alarm.** This can be accomplished by simply removing the wiring connector at the top of the pump, then reconnecting it.

Similar screens exist for the following Pace controlled components on the pilot:

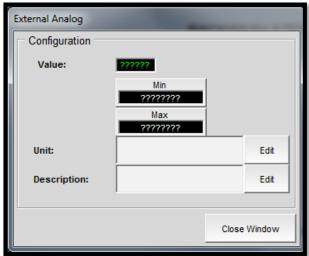
• Chemical Pump X710


• Chemical Pump X730

• Chemical Pump X720

(23) External Analog Input Screen

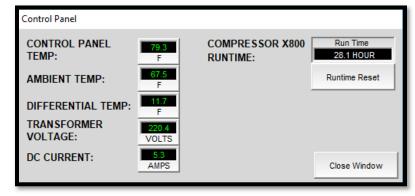
This equipment has the ability to display, scale, and log data from up to four additional (customer installed) analog instruments.


The External Analog Input Configuration buttons allow the operator to configure the HMI to read data from 4-20 mA signals generated from customer supplied (or

"external") analog instruments. Pressing each button will allow the operator to enter the required information.

For each external instrument used, the operator may provide a description and units of measurement, but MUST provide the minimum/maximum measurement set-points.

The Description line describes the instrument; the Unit line describes the engineering units the instrument is measuring in;


and the MIN/MAX entries define the range of measurement (scaling).

NOTE: The .csv file designated for the external analog instruments will be present on the removable flash drive even if no instruments are being utilized.

(24) Control Panel Screen

If the CONTROL PANEL condition button is selected, the following screen is displayed.

This screen displays important diagnostic information about the environmental condition (temperature inside and outside of the control panel) and the

electrical health of the pilot module.

(25) HMI Alarms and Conditions

The alarms generated by the equipment are summarized in the Alarm List. The "Message" column indicates the alarm text shown at the bottom of each HMI screen and on the ALARM SUMMARY and ALARM HISTORY screens. The "Condition" column describes the logic that generates the alarm. The "Shutdown" column identifies if the alarm will cause the equipment to shut down.

ALARM LIST

ALARM MESSAGE	CONDITION	SHUTDOWN
Test Email Alarm	Test email generated	
Data Log File Length Shutdown Alarm	Data log file length greater than shutdown limit	
Data Log File Length High Alarm	Data log file length greater than high limit	
Data Log Interval Not Defined	Data log interval less than 1 second or greater than 65535 seconds	
Data Logging Not Enabled	Data logging set to off	
Air Dryer Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X*
Chemical Pump X710 Fault Alarm	Motor fault detected NOTE: Disconnect power wiring to pump before resetting alarm	
Chemical Pump X710 Dissolved Ozone High Alarm	Process value is greater than ALARM DEADBAND for entered ALARM	

	DELAY time	
Chemical Pump X710 Dissolved Ozone Low Alarm	Process value is less than ALARM DEADBAND for entered ALARM DELAY time	
Chemical Pump X720 Fault Alarm	Motor fault detected NOTE: Disconnect power wiring to pump before resetting alarm	
Chemical Pump X720 Dissolved Ozone High Alarm	Process value is greater than ALARM DEADBAND for entered ALARM DELAY time	
Chemical Pump X720 Dissolved Ozone Low Alarm	Process value is less than ALARM DEADBAND for entered ALARM DELAY time	
Chemical Pump X730 Fault Alarm	Motor fault detected NOTE: Disconnect power wiring to pump before resetting alarm	
Chemical Pump X730 Dissolved Ozone High Alarm	Process value is greater than ALARM DEADBAND for entered ALARM DELAY time	
Chemical Pump X730 Dissolved Ozone Low Alarm	Process value is less than ALARM DEADBAND for entered ALARM DELAY time	
Compressor X800 Not in Auto Alarm	Component control not set to AUTO	
Compressor X800 Fail Alarm	Component commanded to run but not running after 30 seconds	X*
Feed Gas Transmitter Zeroing Valve Not in Auto Alarm	Component control not set to AUTO	
Feed Gas Transmitter Sample Valve Not in Auto Alarm	Component control not set to AUTO	
Contactor X100 Ozone Diffuser Isolation Valve Not in Auto Alarm	Component control not set to AUTO	
Contactor X200 Ozone Diffuser Isolation Valve Not in Auto Alarm	Component control not set to AUTO	
Contactor X100 Off Gas Sample Valve Not in Auto Alarm	Component control not set to AUTO	
Contactor X200 Off Gas Sample Valve Not in Auto Alarm	Component control not set to AUTO	
Off Gas Concentration Zeroing Valve Not in Auto Alarm	Component control not set to AUTO	
Emergency Stop Alarm	Emergency stop button depressed NOTE: Rotate E-Stop button before resetting alarm	Х
Contactor X100 Ozone Flow Control Valve Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X**

Contactor X100 Ozone Flow Control Valve Failed Alarm	No Transmitter signal for 30 seconds	X**
Contactor X100 Ozone Flow Control Valve Low Alarm	Process value less than entered limit for 30 seconds	X**
Contactor X200 Ozone Flow Control Valve Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X**
Contactor X200 Ozone Flow Control Valve Failed Alarm	No Transmitter signal for 30 seconds	X**
Contactor X200 Ozone Flow Control Valve Low Alarm	Process value less than entered limit for 30 seconds	X**
Particulate Filter X910 Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X**
Particulate Filter X920 Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X**
Contactor X100 Flow Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	Х
Contactor X100 Flow Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	Х
Contactor X100 Flow Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	Х
Contactor X100 Injector Flow Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Contactor X100 Injector Flow Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Contactor X100 Injector Flow High Alarm	Process value greater than entered limit for 30 seconds	
Contactor X100 Injector Flow Low Alarm	Process value less than entered limit for 30 seconds	
Contactor X100 Injector Flow Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	
Contactor X200 Flow Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	Х
Contactor X200 Flow Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Contactor X200 Flow Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	
X200 Injector Flow Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
X200 Injector Flow Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	

Contactor X200 Injector Flow High Alarm	Process value greater than entered limit for 30 seconds	
Contactor X200 Injector Flow Low Alarm	Process value less than entered limit for 30 seconds	
Contactor X200 Injector Flow Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	
Inlet Filter Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X*
Contactor X100 Liquid Gas Separator Leak Detector I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Contactor X100 Liquid Gas Separator Leak Detectorl/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Contactor X100 Liquid Gas Separator Leak Alarm	Leak detected for 30 second	
Contactor X200 Liquid Gas Separator Leak Detector I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Contactor X200 Liquid Gas Separator Leak Detector I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Contactor X200 Liquid Gas Separator Leak Alarm	Leak detected for 30 second	
Chemical Cabinet Leak Detector I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Chemical Cabinet Leak Detector I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Chemical Cabinet Leak Alarm	Leak detected for 30 second	Х
O2 Panel Liquid Gas Separator Leak Detector I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
O2 Panel Liquid Gas Separator Leak Detector I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
O2 Panel Liquid Gas Separator Leak Alarm	Leak detected for 30 second	
Chemical Tank X710 Level Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Chemical Tank X710 Level Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Chemical Tank X710 Level High Alarm	Process value greater than entered limit for 30 seconds	

Chemical Tank X710 Level Low Alarm	Process value less than entered limit for 30 seconds	
Chemical Tank X710 Level Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	
Chemical Tank X720 Level Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Chemical Tank X720 Level Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Chemical Tank X720 Level High Alarm	Process value greater than entered limit for 30 seconds	
Chemical Tank X720 Level Low Alarm	Process value less than entered limit for 30 seconds	
Chemical Tank X720 Level Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	
Chemical Tank X730 Level Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Chemical Tank X730 Level Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Chemical Tank X730 Level High Alarm	Process value greater than entered limit for 30 seconds	
Chemical Tank X730 Level Low Alarm	Process value less than entered limit for 30 seconds	
Chemical Tank X730 Level Transmitter Sensor Fault Alarm	Transmitter fault detected. See IO Link for information	
Oxygen Concentrator Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X*
Oxygen Concentrator Not in Auto Alarm	Component control not set to AUTO	
Ozone Generator Differential Pressure High Alarm	Process value greater than entered limit for 30 seconds	X**
Concentrated Oxygen Transmitter Failed Alarm	No Transmitter signal for 30 seconds	X*
Concentrated Oxygen Low Alarm	Process value less than entered limit for 30 seconds	X*
Ozone Generator Not in Auto Alarm	Component control not set to AUTO	
Ozone Generator Failed Alarm	No Transmitter signal for 30 seconds	X**
Ozone Generator Fault Alarm	Generator fault detected	X**
Ozone Generator Flooded Cell Alarm	Generator flooded cell detected	X**
Ozone Generator Concentration High Alarm	Process value greater than entered limit for 30 seconds	
Ozone Generator Concentration Low Alarm	Process value less than entered limit for 30 seconds	

Ozone Generator Reactor Not in Auto Alarm	Component control not set to AUTO	
Ambient Ozone Transmitter Failed Alarm	No Transmitter signal for 30 seconds	X**
Ambient Ozone Permissible Exposure Limit Alarm	Ambient ozone PEL limit exceeded	X**
Ambient Ozone Short Term Exposure Limit Alarm	Ambient ozone STEL limit exceeded	X**
Ozone Feed Gas Transmitter Error Alarm	Transmitter fault detected. NOTE: Zero analyzer before resetting alarm	
Ozone Feed Gas Transmitter Failed Alarm	No Transmitter signal for 30 seconds	X**
Ozone Off Gas Transmitter Error Alarm	Transmitter fault detected. NOTE: Zero analyzer before resetting alarm	
Ozone Off Gas Transmitter Failed Alarm	No Transmitter signal for 30 seconds	
Ozone Off Gas High Alarm	Process value greater than entered limit for 30 seconds	
Ozone Off Gas Low Alarm	Process value less than entered limit for 30 seconds	
Ozone System Sequencer Step Time Too Long Alarm	Sequencer step longer than entered limit	
Dissolved Ozone Transmitter X110 Failed Alarm	No Transmitter signal for 30 seconds	
Dissolved Ozone X110 High Alarm	Process value greater than entered limit for 30 seconds	
Dissolved Ozone X110 Low Alarm	Process value less than entered limit for 30 seconds	
Dissolved Ozone Transmitter X210 Failed Alarm	No Transmitter signal for 30 seconds	
Dissolved Ozone X210 High Alarm	Process value greater than entered limit for 30 seconds	
Dissolved Ozone X210 Low Alarm	Process value less than entered limit for 30 seconds	
X100 Feed Gas Outlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X**
X100 Feed Gas Outlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	X**
Contactor X100 Feed Gas Outlet Pressure Low Alarm	Process value less than entered limit for 30 seconds	X**
X200 Feed Gas Outlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X**
X200 Feed Gas Outlet Pressure Transmitter I/O Link	Transmitter fault detected. See IO Link for information	X**

Communications Fault Alarm		
Contactor X200 Feed Gas Outlet Pressure Low Alarm	Process value less than entered limit for 30 seconds	X**
PLC Program Downloaded Alarm	New PLC program downloaded	Х
PLC Power Failed Alarm	Main PLC power failed	Х
DC Power Supply Failed Alarm	No Transmitter signal for 30 seconds	
Power Supply Current High Alarm	Process value greater than entered limit for 30 seconds	
Compressor Inlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X*
Compressor Inlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Compressor Inlet Pressure Low Alarm	Process value less than entered limit for 30 seconds	X*
Compressor Outlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X*
Compressor Outlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Compressor Outlet Pressure High Alarm	Process value greater than entered limit for 30 seconds	
Compressor Outlet Pressure Low Alarm	Process value less than entered limit for 30 seconds	X*
Air Dryer Inlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X*
Air Dryer Inlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Air Dryer Outlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X*
Air Dryer Outlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Air Dryer Outlet Pressure High Alarm	Process value greater than entered limit for 30 seconds	
Oxygen Concentrator Outlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X*
Oxygen Concentrator Outlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	

Oxygen Concentrator Outlet Pressure High Alarm	Process value greater than entered limit for 30 seconds	X*
Oxygen Concentrator Outlet Pressure Low Alarm	Process value less than entered limit for 30 seconds	X*
Ozone Generator Inlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X**
Ozone Generator Inlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Ozone Generator Outlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X**
Ozone Generator Outlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Ozone Flow Controller Inlet Pressure Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	X**
Ozone Flow Controller Inlet Pressure Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Contactor X100 Feed Pump Motor Current High Alarm	Process value greater than entered limit for 30 seconds	
Contactor X100 Feed Pump Failed Alarm	Component commanded to run but not running after 30 seconds	Х
Contactor X100 Feed Pump Flow High Alarm	Process value is greater than ALARM DEADBAND for entered ALARM DELAY time	
Contactor X100 Feed Pump Flow Low Alarm	Process value is less than ALARM DEADBAND for entered ALARM DELAY time	Х
Contactor X200 Feed Pump Motor Current High Alarm	Process value greater than entered limit for 30 seconds	
Contactor X200 Feed Pump Failed Alarm	Component commanded to run but not running after 30 seconds	Х
Contactor X200 Feed Pump Flow High Alarm	Process value is greater than ALARM DEADBAND for entered ALARM DELAY time	
Contactor X200 Feed Pump Flow Low Alarm	Process value is less than ALARM DEADBAND for entered ALARM DELAY time	Х
Contactor X200 Feed Pump VFD Fault	Controller fault detected. See VFD for information	
Air Dryer Dew Point Temperature Transmitter Failed Alarm	No Transmitter signal for 30 seconds	X*
Air Dryer Dew Point Temperature	Process value greater than entered	Χ*

High Alarm	limit for 30 seconds	
Off Gas Sample Pump Not in Auto Alarm	Component control not set to AUTO	
Control Panel Differential Temperature High Alarm	Process value greater than entered limit for 30 seconds	
Control Panel Interior Temperature Transmitter Failed Alarm	No Transmitter signal for 30 seconds	
Control Panel Internal Temperature High Alarm	Process value greater than entered limit for 30 seconds	
Ambient Temperature Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Ambient Temperature Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	
Ambient Temperature Transmitter High Alarm	Process value greater than entered limit for 30 seconds	
Compressor Outlet Temperature Transmitter I/O Link Communications Failed Alarm	No Transmitter signal for 30 seconds	
Compressor Outlet Temperature Transmitter I/O Link Communications Fault Alarm	Transmitter fault detected. See IO Link for information	

NOTE: Not in Auto Alarm: This alarm does not indicate an operational failure. It is simply an indicator to remind the operator that the given process is under manual control.

WARNING: Equipment protection is enabled only when control is in AUTO. Operator is responsible to protect equipment from damage when control is not in AUTO. Equipment not operating in auto is displayed on the alarm summary screen.

DANGER: High ambient ozone shutdown is only enabled when generator control is in auto. Operator is responsible for monitoring ambient ozone levels when control is in manual.

STARTUP

1. Pre-Startup Procedures

A. Pump Inspection

Qualified personnel should confirm that the feed pump energizes and rotates in the correct direction.

Verify that the pump is aligned correctly and that the shaft rotates without binding.

WARNING: <u>Do not</u> run the pumps dry. Do not deadhead pump for more than 30 seconds.

B. Open Process Connections

Open all process valves required for supply to the equipment. These are not the valves on the equipment but field valves that may need to be opened to supply water to the equipment.

C. Fill Contactors

Set the feed pump to manual control (ON) and fill the contactor tanks. Check for leaks. Make sure that all drain valves are closed, so the feed water is able to flow from contactor to contactor (this step may also be performed during start-up).

D. Feed Gas and Off Gas Transmitters Warm-Up

The two ozone gas analyzers (located inside the control panel) require a minimum of 30 minutes to warm up. Therefore, every time the main power is turned on, the equipment must be allowed to sit for a minimum of 30 minutes before pressing the ONLINE button and initiating the start-up sequence.

ATTENTION: Upon initial power-up, the feed gas and off gas analyzers will display instrument error alarms until the start-up sequence is completed.

E. Injecting Ozone using the Eductors

Injecting ozone through an eductor is very different from using the standard ceramic diffuser stones. The eductors used for this project (Mazzei Model 586) provide maximum suction with an injector inlet pressure around 20...25 psig, corresponding to a motive flow of approx. 4.5 gpm. Changing the water flow rate through the educator will change the suction pressure on the gas line (i.e. too much water flow accompanied by too little gas flow can cause vacuum pressures that will result in a system shutdown).

Refer to the Mazzei data sheet included on the accompanying USB drive for more information about this eductor.

2. Startup Procedures

- A. Turn main disconnect handle to ON.
- B. Log into the HMI using appropriate login level.
- C. Verify the alarm limits and data log settings are correct.
- D. Open or close appropriate hand-actuated valves.

- E. Connect the off gas sample line to the top of the contactor.
- F. Confirm that setpoints on the feed pump screen are at desired values.
- G. Set Feed Pump X100 (or X200) CONTROL to ON and begin filling contactors with water. Wait until the contactor is full of water before proceeding, then set Feed Pump CONTROL to AUTO.
- H. Remove caps from the dissolved ozone sensors and lock the transmitters onto their flow-through cells. Open isolation valves DV-X110 and DV-X210 on the flow-through cells.
- I. If desired, set the ozone generator MANUAL SETPOINT to 0%, which will deactivate ozone production during start-up.
- J. Set the diffuser flow to the desired setpoint (either in SLPM or ozone dose on the screen.
- K. **NOTE:** Allow a minimum of thirty (30) minutes between applying power to the system and pressing the ONLINE button.
- L. Initiate the start-up sequence by pressing the ONLINE button on the Overview screen. (The system will run through a series of pressure and flow verifications, followed by an instrument zeroing. When complete, the system will register as being in SERVICE.)
- M. From the HMI, configure the ozone generator MODE to the desired operation and begin producing ozone.
- N. **NOTE:** During a gas analyzer zero calibration, the ozone gas flow from the generator is held constant. Thirty seconds after the end of a zero calibration, active control of the ozone flow will resume.

CALCULATIONS

1. Ozone Calculations

Several values displayed on the HMI are calculated using the measured values from various instruments. The formulas used to calculate these values are listed below.

NOTE: These calculated values are intended to provide a quick reference based on the current operating conditions and instrument values. Operators are strongly advised to personally verify all data and calculations. Intuitech is not responsible for incorrect data if independent verification and regular a regular calibration schedule is not enforced.

A. Transfer Efficiency

The displayed transfer efficiency is a ratio calculated from the amount of ozone gas entering the contactor and the amount of ozone gas venting off the top of the contactor. The following equation is used:

$$TE = \frac{C_F - C_O}{C_F} (100)$$

 $T_E = Transfer Efficiency (\%)$

C_F= Feed Gas Concentration (g/Nm³)

 $C_0 = Off Gas Concentration (g/Nm³)$

B. Theoretical Ozone Dosage

The displayed theoretical ozone dosage has units of mg/l (or milligrams of ozone per liter of water). The following equation is used (the last three terms are conversion factors):

$$D_T = \frac{\dot{Q}_G}{\dot{Q}_W} (C_F) \left(\frac{1gal}{3.785l} \right) \left(\frac{1000mg}{1g} \right) \left(\frac{1m^3}{1000l} \right)$$

 D_T = Theoretical Ozone Dosage (mg/l)

 $Q_G = Gas$ (Diffuser) Flow Rate (slpm)

 $Q_W = Feed Water Flow Rate (gpm)$

C. Actual Ozone Dosage

The displayed actual ozone dosage also has units of mg/l, and is the theoretical ozone dosage multiplied by the transfer efficiency. i.e.:

$$D_A = \frac{\dot{Q}_G}{\dot{Q}_W} (C_F - C_O) \left(\frac{1gal}{3.785l} \right) \left(\frac{1000mg}{1g} \right) \left(\frac{1m^3}{1000l} \right)$$

 $D_A = Actual Ozone Dosage (mg/l)$

SHUTDOWN

1. Shutdown Procedures

A. Disconnect Electrical power

All electrical connections are to be isolated and disconnected by qualified personnel.

B. Disconnect Process connections

All process connections (water, chemical, etc.) should be isolated and disconnected by qualified personnel.

C. Replace Cap on Dissolved Ozone Sensors.

The sensor tips on the dissolved ozone transmitters <u>must be kept wet</u>. If the sensor face is allowed to dry out, it will be destroyed.

WARNING: Do not allow the dissolved ozone sensors tips to dry out. <u>Sensor caps must be saved and reinstalled when not in service and prior to storage.</u> User is liable for all damage if caps are not installed.

D. Draining Equipment

Drain all equipment before storage or shipping to prevent freeze-damage. This includes draining all instruments, piping, contactors, and pump housings.

F. Secure Loose Parts

All loose parts are to be properly secured and stored with equipment. Place hardware in a plastic bag and store in the toolbox.

MAINTENANCE

1. General

All maintainable equipment is listed along with suggested maintenance procedures and replacement parts. Replacement parts can be purchased through Intuitech, Inc. A minimum maintenance schedule is provided for components that can be maintained on a timetable. However, maintenance intervals for all components are determined by such factors as the environment, runtime, and water quality. Operational experience is the most important factor when determining a maintenance schedule.

2. Maintainable Equipment

A. Feed Pump Assemblies (X100, X200)

Pump head - Mfr: Moyno, PN: 34450 Stator - Mfr: Moyno, PN: 340-3504-120

Maintenance information:

(1) Pump head maintenance

The filter feed pumps require a minimum amount of maintenance. Maintenance includes routine cleaning with regular stator and coupling inspection.

(2) Coupling maintenance

The rubber spider coupling connecting the two ends of the coupling assembly (between the pump head and motor) should be periodically checked for wear. Replacement is necessary if excessive slop or noise is observed between the pump and motor couplings, or if the spider coupling appears cracked or broken.

(3) Stator maintenance

The progressive cavity pump stator may need to be replaced if the pump performance decreases. Several factors can affect stator life, including runtime, pump speed, water quality, etc. Over time the pump speed will increase to maintain the same flow rate. This is a sign the stator is wearing. If the pump cannot maintain the desired flow rate at a speed of 100%, then the stator should be replaced. Replace the stator by first removing the four screws holding the suction housing to the pump body (red arrows). Set suction housing aside.

Slide old stator off the rotor and replace with new stator. Do not "unscrew" the old stator, or "screw" the new stator into place. Simply push or pull the stator straight onto or off-of the rotor. (Rotating the spiral pump shaft may cause it to loosen and become detached.) When installing the new stator make sure the edges of the stator seal up within the groove in the pump body. Replace screws.

B. Feed Gas Transmitter, Off Gas Transmitter (X910, X920)

Mfr: IN-USA, PN: Mini-HiCon Maintenance information:

(1) Zeroing

The feed and off gas ozone analyzers will require periodic zero calibrations to maintain accuracy. Leaving the analyzers powered (24-7) will minimize the amount of zero drift, but it is recommended the transmitters be zeroed at least once a week to ensure accurate readings. To begin a zeroing sequence, follow the zeroing instructions listed under the HMI operation section of this manual. The units will be automatically purged with ozone free gas for several minutes before being zeroed.

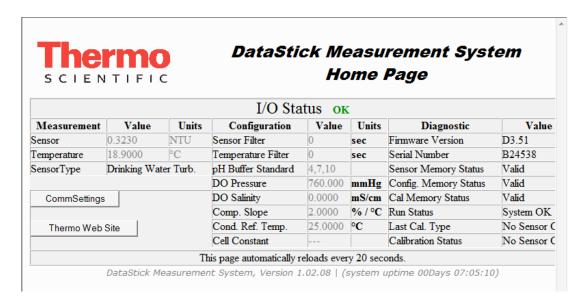
C. Dissolved Ozone Sensor

Mfr: Thermo Scientific, Sensor Tip PN: OZ31B Data Stick PN: DS21

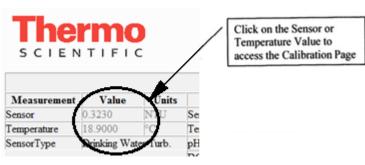
Ethernet Adapter PN: CA27 R2A

Maintenance information:

(1) Sensor Tip


The dissolved ozone sensor on the pilot is equipped with a removable sensor tip. This tip is designed to be replaced when the sensor reaches its end-of-life. To replace tip, simply unscrew retaining ring and remove old tip. Reassemble in reverse.

WARNING: When handling the assembled sensor, do not set the sensor on its tip or damage to the membrane will result. Severe impacts on the tip of the sensor from dropping or other misuse may cause permanent damage to the sensor.


(2) Calibration

Intuitech Inc. recommends the Thermo Scientific dissolved ozone transmitters be calibrated on-site prior to equipment operation and at regular intervals during

operation. Refer to the Thermo Scientific user manual on the accompanying USB Drive for additional calibration information.

To access the calibration screen, press the instrument configuration button. Once connected, the above screen will appear. To begin a calibration, simply click on the sensor value displayed, this will open

the calibration screen. Then enter the value of the calibration standard and press "Set".

NOTE: The user name is "aqa". The password is "aqa".

If additional assistance is required, contact Intuitech technical support.

D. Ozone Destruct (X100, X200, X910, X920)

Mfr: Intuitech Inc.

Maintenance information:

(1) Drain Valve

Due to the fact that moisture can collect in the bottom of the main destruct units, bleed valves have been installed (DV-X109, X209). Visually inspect the clear piping above the valve for signs of moisture buildup and drain accordingly. Some ozone gas may escape while the drain valve is open.

(2) Destruct

The ozone destruct system is based on a catalyst. There is no chemical reaction, so the destruct won't be exhausted, or "used up". However, the catalyst can be poisoned by foreign contaminants (the most common being water or water vapor). If the ozone destruct unit quits working and ozone is escaping through the vent at the top of the unit, contact Intuitech immediately for a replacement.

E. Minimum Maintenance Schedule

Maintenance Schedule

Component	Daily	Monthly	Quarterly	Yearly
Feed Pump Stator			X	
Feed Pump Coupling				X
Ozone Destruct Drain Valves	X			
Zero Feed Gas and Off Gas Transmitters		Х		

SAFETY

1. Safety Information

WARNING: INHALATION HAZARD -

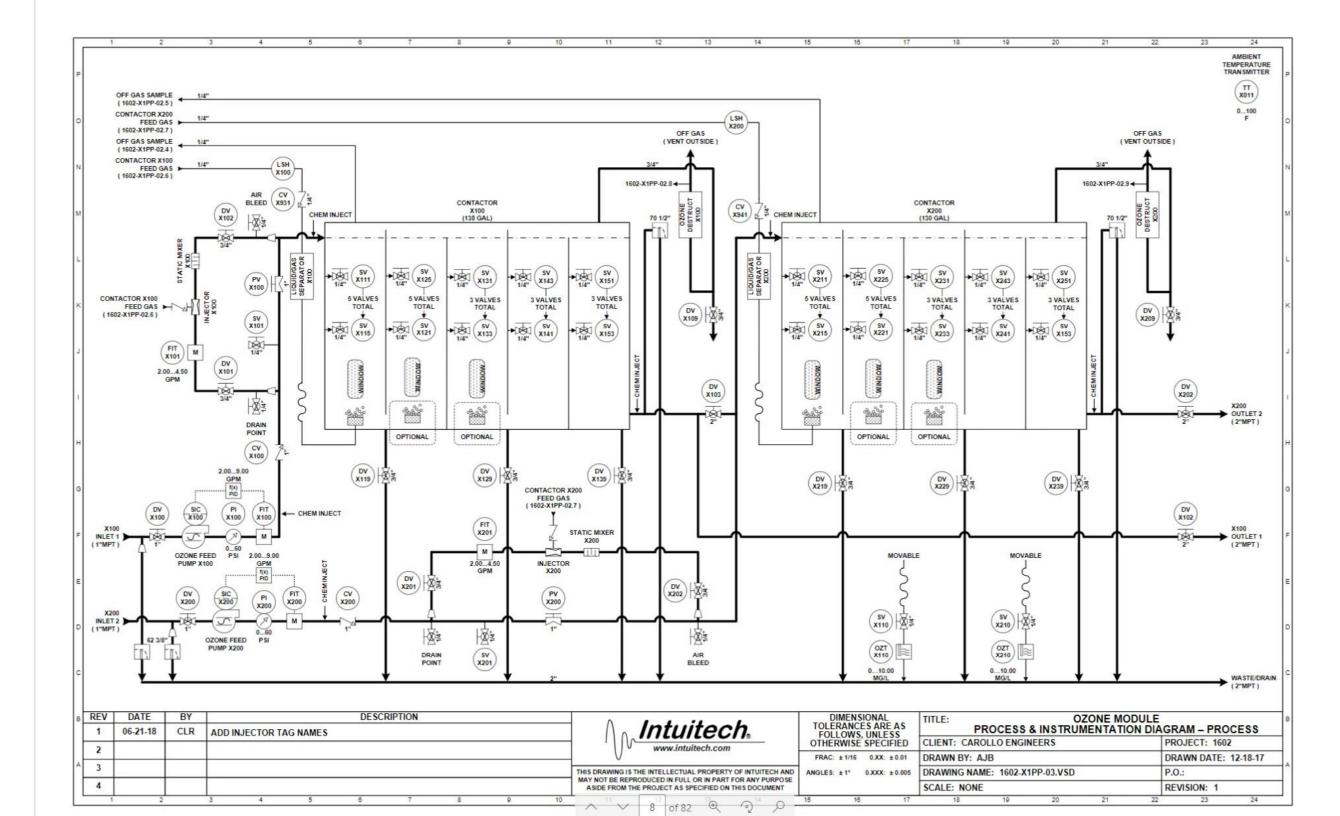
Inhalation of ozone gas has been known to cause extreme irritation to the upper and lower respiratory tract. High exposure may cause pulmonary edema. OSHA Permissible Exposure Limit (PEL) to ozone is 0.1 ppm for a period of 8 hours. The Short Term Exposure Limit (STEL) is defined as 0.3 ppm for 30 seconds.

(Ref. OSHA Air Contaminants Standard, 29 CF R 1910.1000) (EU Directives – 96/62/EC, 96/72/EC, 99/30/EC)

WARNING: FIRE HAZARD -

Oxygen is a fire hazard. It is very flammable and vigorously accelerates the burning of combustible materials. To avoid fire and/or explosion, never use oil, grease or any other combustible materials on or near the ozone or oxygen equipment. Smoking, heat and open flame should be kept at a distance of no less than 25 feet from any part of the system. It is recommended that only individuals experienced in the safe handling of oxygen be allowed to operate this equipment.

WARNING: OXIDATION HAZARD -

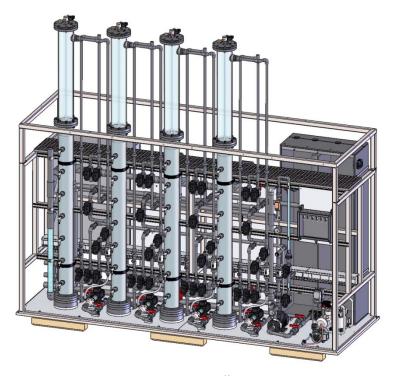


Ozone is a highly toxic oxidizer known to accelerate the decomposition of rubber and react with non-saturated organic compounds. Avoid contact with all reducing materials, organic or inorganic. The health hazards associated with ozone are due to its oxidizing potential.

OZONE HAZARDS -

Ozone has a distinctive odor, which is easily recognized at very low concentrations (0.01 - 0.05 ppm). In the event of accidental release, evacuate the danger area. Open windows and doors and allow area to ventilate. Personnel exposed to high levels of ozone should be removed to fresh air; if breathing is difficult a trained person can administer oxygen. Get medical attention.

APPENDIX- A


FILTERS - INTUITECH

Operations and Maintenance Manual

For

Carollo Engineers

Filtration Module

Release #1

Prepared By:

Project # 1554

August 12, 2016

TABLE OF CONTENTS

SPECIFICATIONS

I. Filtration Module	4
A. Specifications	4
1. General	4
2. Instrumentation	4
3. Physical	4
4. Electrical	4
INSTALLATION	
	_
1. Un-packaging	
2. Mechanical Inspection	
A. Initial Visual Inspection	
B. Leveling	
C. Component Mounting	
D. Piping Connections	
3. Electrical Inspection	
A. Initial Visual Inspection	
B. Electrical Connections	
1. Control Panel Wiring	
2. Customer Feeder Circuit Breaker	6
ODED A THOM	
OPERATION	
1. Equipment Information	6
2. Operation Sequence	
3. Sequence Matrix	
4. Operation Interface	
A. General	
B. Manual Control Panel Operators	
1. Indicator Lights	
2. Push Buttons	
3. Main Disconnect	
C. Human Machine Interface (HMI)	
D. HMI Navigation Icons	
1. Overview Button	
2. Process Menu Button	
3. Trend Menu Button	
4. Alarms Button	
5. Settings Menu Button	
6. Log In Button	
7. Keypads	
E. HMI Operation	

1. Log In/Out Screen	
2. Alarm Screens	
3. Instrument Displays	14
4. Trending Screen and Pen Selection	14
5. Settings Menu Screens	
6. Data Logging Screen	
7. Email Alarms Screen	17
8. Date/Time Screen	19
9. Overview Screen	19
10. Process Menu	21
11. Series / Parallel Configuration	21
12. Process Control Screen	22
13. Sequencing Controls	22
14. Valve Controls	23
15. PID Loop Control Screens	24
16. Pace Loop Control Screens	25
17. Filter Air Vents	
18. HMI Alarms and Conditions	28
STARTUP	
STARTOI	
1. Pre-Startup Procedures	
A. Electrical Installation	
B. Media-Installation	
C. Top Section of Vessels Installation	
D. Gravity Waste vs. Pressure Waste	
E. Open Process Connections	
F. Backwash Tank	
G. Pump Inspection	35
1. Feed Pumps	
2. Backwash Pump	35
H. Fill Filter Vessels	36
2. Startup Procedures	
3. Backwashing	36
EQUIPMENT OPERATION	
1. Standard Operation	37
A. On-Board Air Supply	
B. Water Flow Meters	
C. Air Flow Meter	
D. Pneumatic Valve Solenoids	
E. Air Scour Blower Protection	
F. Filter Vessel Level Transmitters	
G. Filter Vessel Pressure Relief	
H. Filter Column Vent Valve	

SHUTDOWN

1. S	Shutdown Procedures	38
A.	Disconnect Electrical Power	38
B.	Disconnect Process Connections	38
C.	Draining Equipment	39
D.	Media Removal	39
E.	Filter Vessels and Weir Piping Disassembly	39
F.	Secure Loose Parts	39
MAIN	NTENANCE	
	General	
	Maintainable Equipment	
A.	Feed Pump Assemblies (X100, X200, X300, X400)	
	Pump head maintenance	
	2. Coupling maintenance	
	3. Stator maintenance	
	Backwash Pump Assembly (X800)	
	General	
2	2. Troubleshooting	
C.	((
	Air Filter	
2	2. Compressor Oil	
D.	1 m 1 op weween 1 assembly (129 oo)	
1	Filter Element	
E.	Air Scour Blower (X600)	
	Pressure Regulator	
	2. Air Filter	
	Universal Controller Assemblies (TUIT-X100, TUIT-X200, TUIT-X300, TUIT-X40	
	. General	
	2. Controller Maintenance	
G.		
	Sensor Maintenance	
	2. Calibration	
Н.	r	
-	General	
_	2. Peristaltic tubing maintenance and troubleshooting	
3. N	Maintenance Schedule	44

APPENDIX- A

1. O&M Drawing Release

SPECIFICATIONS

1. Filtration Module

A. Specifications

1. General

Maximum Total Flow Rate: 12.0 gpm (45.4 L/min)

Filters: 4 @ 6 inch diameter (150 mm)

x 117 inch height (3.0 m)

Maximum Media Depth: 72 inch (1.83 m)

Filtration Rate: 2.55...15.3 gpm/ft² (6.23...37.4 m/h) Backwash Rate: 5.1...30.6 gpm/ ft² (12.4...74.8 m/h)

Backwash Tank Capacity: 150 gal (568 L)

Air Scour Rate: 2.55...10.2 scfm/ft² (46.6...186.7 m/h) Chemical Feed Pumps: 5 @ 0.01 21.7 gpd (0.03...57 mL/min)

Chemical Feed Tanks: 5 @ 4 gal (15.1 L)

2. Instrumentation

Flow rate*

Headloss (each filter)*

Effluent turbidity (each filter)*

Air scour flow*
Backwash flow*
Backwash tank level

3. Physical

Assembled Dimensions: 136"H X 146"W X 50"D

Dry Weight: Approx. 2600 lbs. Wet Weight: Approx. 5000 lbs.

4. Electrical

Phase: 1

Frequency: 60 Hz Voltage: 120 VAC Current: 20 A Max

^{*}Data logged

INSTALLATION

1. Un-packaging

The Filter Module upper vessel sections were removed for shipping. A forklift will be required to lift the crate off of the shipping truck and for final positioning of the pilot module. Ensure that the forklift is rated to safely carry the weight of the equipment (approx. 2700 lbs).

2. Mechanical Inspection

A. Initial Visual Inspection

Carefully inspect the skid for mechanical damage to the frame, filter vessels, piping, motors, and instruments that may have occurred during the shipping or positioning of the equipment.

B. Leveling

Verify that the equipment is level. The module is equipped with six adjustable leveling feet. Ensure the leveling feet are extended sufficiently to lift the module off of the castors. Each foot should be level to within ½ inch of each other.

C. Component Mounting

Verify that all components and instruments are secure. These include pipe straps and instrument mounts.

D. Piping Connections

Verify that all PVC piping connections are secure. These include pipe straps, threaded unions, check valves, process valves, and sample valves. Confirm that the process piping connections are installed and tightened. Further confirm that the connections are in accurate alignment and free from any undue stress imposed by connecting piping.

WARNING: Stress imposed by improperly aligned field piping may damage equipment. Ensure all connecting piping is free of undue stress.

ATTENTION: When installing, take care that <u>all</u> o-rings are installed with their corresponding connections or the assembly will leak. O-rings within PVC unions are frequently missed.

3. Electrical Inspection

A. Initial Visual Inspection

Carefully inspect for mechanical damage to the control panels that may have occurred during shipping or installation of the equipment. Excessive vibration from shipping can cause electrical components within the control enclosures to snap off of the din rail and cause damage to other components.

B. Electrical Connections

1. Control Panel Wiring

Verify that all wires within the control panel are terminated. Vibration from shipping can cause conductors to come loose. Un-terminated wires can short to other components, conductors, or the enclosure wall and cause damage.

2. Customer Feeder Circuit Breaker

Identify the location of the customer feeder circuit breaker so it can be easily identified and locked-out when servicing of the pilot electrical system.

OPERATIONAL OVERVIEW

1. Equipment Information

Module consists of four constant rate filters with individual feed pumps, and five chemical pumps. Each filter operates using automatic PID flow control. The module can be operated as four independent filters, or two sets of two filters in series (vessel 1 feeds vessel 2 and vessel 3 feeds vessel 4). The air scour and backwash systems are shared by all filters, and also utilize automatic PID flow control. Chemical feed pumps are flow paced with direct entry of chemical dosage. Each chemical pump can be selectively paced to any of the filter feed flows, the combined filter feed flow, or the backwash flow. An improved backwash process is included, providing superior performance when operating biological filtration processes. Backwashing is initiated manually by an operator in the manual mode, or on runtime, run volume, headloss, or effluent turbidity in the automatic mode. Only one filter may be backwashed at a time. Other features include automatic data logging of key parameters, remote monitoring and control using a standard web browser, and email alarm notification.

With the exception of the manually actuated valves, the equipment is monitored and controlled by an HMI (Human Machine Interface). The HMI communicates with the onboard PLC (Programmable Logic Controller) which monitors and controls various instruments and components. In short, the operator monitors the equipment through the HMI, which interacts with the PLC, which in turn activates the various equipment components.

2. Operation Sequence

The equipment follows a sequence of operation as summarized in the Sequence Matrix. The sequence matrix depicts the portion of the control logic that energizes pumps, valves, and other components required for each step of the operation. The PLC advances from step to step based on either an elapsed time or a specific event. A thorough understanding of the sequence matrix is essential to properly understand the equipment's operation.

The sequence matrix defines step advance criteria for manual, semi-automatic and automatic modes of operation. Each step in the operation sequence has a number and description. The "field devices" section of the table shows which equipment components are activated in any given step. The "condition" columns define the events or time requirements for advancing from step to step. The "go to step" columns indicate which step the equipment will be advancing to after the conditions or time requirements have been met in the given step. The "flow" columns define which flow setpoint the system will attempt to maintain as it applies to each step. Finally, the legend defines terminology used in the matrix.

While running, the equipment is always in one of three stages of the operation sequence: offline, service, or backwash. Prior to entering service, each filter will progress through a filter to waste step. Filter to waste will continue until the entered time limit has elapsed or the effluent turbidity drops below a user-defined limit. Offline correlates to step "0", filter to waste and service are steps "1" and "2" (respectively), while the complete backwash sequence encompasses the remaining steps.

For example, when the equipment is running in "auto" mode it follows the "auto step advance". The first step in the operation sequence is "0". Step "0" is described as OFFLINE. The "field devices" section of the matrix indicates that during the OFFLINE step none of the equipment's components are activated (all valves are closed, all pumps are off). The "auto step advance" column informs that the equipment will stay in step "0" until the conditions of EVENT 1 are met. The legend defines EVENT 1 as "system mode is in "auto" or in other words the equipment is switched to "auto" mode. When the equipment is switched to "auto" mode the conditions of EVENT 1 are met, the "auto step advance" criteria states that the equipment will advance to step "1". Step "1" is described as FILTER TO WASTE (i.e. filtering water with the effluent going to drain, instead of the backwash tank). The "field devices" section defines which components are activated during the step. The equipment will continue in step "1" until EVENT 3 occurs (indicating the step time has elapsed or the effluent turbidity has dropped below the defined limit). Once EVENT 3 occurs the "go to step" column states that the equipment will advance to step "2". Step "2" is described as "SERVICE". This is normal filtration.

During the backwash sequence the equipment will advance from step to step based on the elapsing of time limits as well as events. Once a backwash sequence is started the equipment will continue through the entire sequence. In Semi-Auto mode an operator can start, stop or interrupt the filter sequence in any step. Be aware that interrupting a backwash sequence may foul the backwash tank or otherwise allow debris to bypass the filter. The operator is responsible for all equipment operation when not in Auto mode. Once the backwash sequence is complete the sequence of operations will start over.

Note: Each column is an independent filter with its own sequencer.

3. Sequence Matrix

	STEP DESCRIPTION	AUTO STEP ADVANCE		SEMI STEP ADVANCE		El OW				FIELD DEVICES													
STEP NUMBER						FLOW			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		CONDITION	GO TO STEP	CONDITION	GO TO STEP	FEED	BACKWASH	AIR	FEED PUMP X*00	BACKWASH PUMP X800	AIR SCOUR BLOWER X600		FILTER INFLUENT VALVE DV-X*01	FILTER EFFLUENT VALVE DV-X*02	BACKWASH INLET VALVE DV-X*03	BACKWASH OUTLET VALVE DV- 0X*04	FILTER TO WASTE VALVE X*05	AIR SCOUR INLET VALVE X*06	AIR DRAIN VALVE X*07	FILTER TO TANK VALVE X*08			
0	OFFLINE	EVENT 1	1	EVENT 2	1,4																		
1	FILTER TO WASTE 1	TIME 1	2	TIME 1	2	FLOW 1			Х				Х	Х			Х						
2	FILTER TO WASTE 2	EVENT 3	3	EVENT 3	3	FLOW 1			Х				Х	Х			Х						
3	SERVICE	EVENT 4	4	EVENT 2	0,1,4	FLOW 1			Х				Х	Х						Х			
4	BACKWASH REQUIRED	EVENT 5	5	EVENT 5	5																		
5	AIR DRAIN	EVENT 6	6	EVENT 6	6			FLOW 1			Х			Х			Х		Х				
6	AIR SCOUR	TIME 2	7	TIME 2	7			FLOW 2			Х					Х		Х					
7	AIR SCOUR / BACKWASH	EVENT 7	8	EVENT 7	8		FLOW 1	FLOW 3		Х	Х				Х	Х		Х					
8	BACKWASH 1	TIME 3	9	TIME 3	9		FLOW 2			Х					Х	Х							
9	BACKWASH 2	TIME 4	10	TIME 4	10		FLOW 3			Х					Х	Х							
10	BACKWASH 3	TIME 5	11	TIME 5	11		FLOW 4			Х					Х	Х							
11	SETTLE	TIME 6	0	TIME 6	0											Х							
						I	EGEND																
Х	OPEN OR RUNNING																						
TIME	TIME SETPOINT																						
FLOW	FLOW SETPOINT																						
EVENT 1	SYSTEM MODE IS "AUTO".																						
EVENT 2	SYSTEM MODE IS "SEMI" AND OPERATOR DEPRESSES "OFFLINE", "SERVICE", OR "BACKWASH" BUTTON.																						
EVENT 3	FILTER EFFLUENT TURBIDITY IS LESS THAN LIMIT.																						
EVENT 4	SYSTEM MODE IS "AUTO" AND RUNTIME, R	UN VOLUME,	, HEADL	OSS OR TUI	RBIDITY	IS GREATE	R THAN LIM	IT.															
EVENT 5	BACKWASH TANK LEVEL IS GREATER THAN	N LIMIT AND	NO OTH	HER FILTER I	S BACK\	WASHING.																	
EVENT 6	FILTER VESSEL WATER LEVEL IS LESS TH	AN LIMIT.																					
EVENT 7	FILTER VESSEL WATER LEVEL IS GREATER	R THAN LIMIT																					

4. Operation Interface

With the exception of the manually actuated valves, the equipment is operated from the touch-screen HMI located on the front of the main control panel. The HMI monitors and controls the process by communicating with a PLC that in turn monitors and controls the automated components of the equipment. The HMI gathers data, annunciates alarms, displays historical and real-time trends and can be used to enter set points and adjust alarm limits.

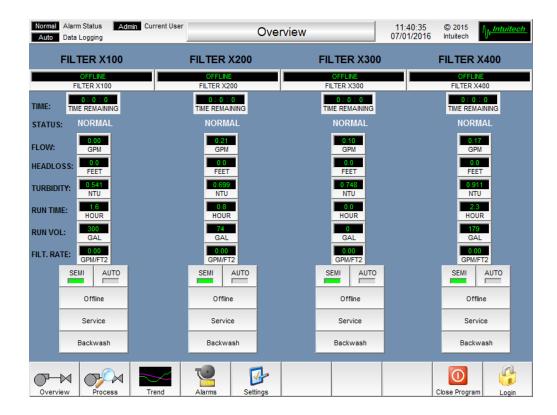
A. General

The system is operated from the front of the control panel. The operating controls consist of:

- HMI
- Two indicator lights
- Emergency stop button
- Main disconnect switch

B. Manual Control Panel Operators

- 1. Indicator Lights
 - **RUNNING** (**Green**) indicates that the equipment is operating.
 - ALARM (Red) indicates that an alarm is present.
- 2. Push Buttons
 - **EMERGENCY STOP-** will stop all equipment operations.


ATTENTION: To clear an emergency stop alarm, the pushbutton must be turned $1/8^{th}$ turn clockwise before pressing the alarm reset button.

3. Main Disconnect

• **DISCONNECT SWITCH** - will disconnect main power to equipment.

C. Human Machine Interface (HMI)

When the equipment is powered up, the HMI will display the following screen. It is necessary to log in with a username and password before system operation is possible.

D. HMI Navigation Icons

The following navigation icon buttons displayed along the bottom of the screen throughout the HMI application provide the following functions:

1. Overview Button

The overview screen displays the entire pilot process.

2. Process Menu Button

The monitoring and control of all automated system components is accessed through the process menu. Some of the process screens are monitoring only, some are control only, and some are for both monitoring and control of system components. For operational ease, the display of some instrument values may appear redundantly on two or more screens.

3. Trend Menu Button

The trend menu allows the operator access to trending screens to analyze and view in a graphical format, the data coming from the system instruments.

4. Alarms Button

The alarm button is used to view the currently active alarms (Alarm Summary). The historical alarms screen (Alarm History) can be accessed from within the alarm summary.

5. Settings Menu Button

The system menu includes buttons to access data logging, e-mail alarms, and the miscellaneous screen. The miscellaneous screen is for setting and configuring various operational features.

6. Log In Button

This icon displays a screen that allows the user to log in and out of different user levels. A password is required. Operators are required to log in with a username and password before system operation is possible.

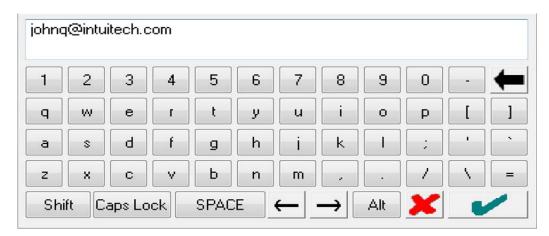
This icon displays a screen that allows the user to log in and out of different user levels. A password is required. Operators are required to log in with a username and password before system operation is possible.

1 2

7 8 9

Min:

Max

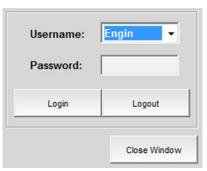

5 6

3600

7. Keypads

There are two different keypads which can be selected by an operator. The simple keypad allows the operator to enter in numerical control values and other information.

NOTE: If the component has an operating range, it will be displayed at the bottom of the keypad - any value entered must fall within that range.

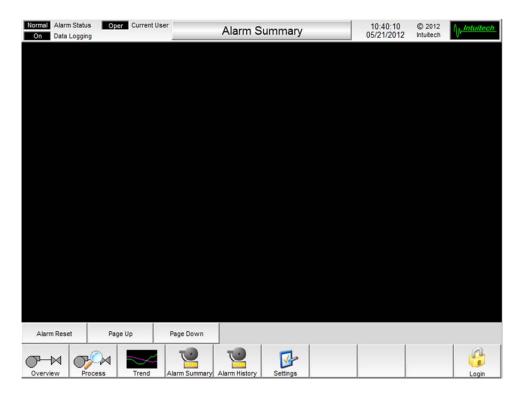

The full keypad is displayed anytime alpha-numeric characters are required. Each keypad is displayed when required.

E. HMI Operation

1. Log In/Out Screen

By selecting the Login icon, the login screen is displayed.

Select the desired level of access (Administrator, Engineer, Operator, Guest, or View) from the drop-down box. Then, select the PASSWORD box and type the appropriate password. Select LOGIN when done. If your login is successful, the new login level will be displayed in the upper


left corner of the screen. For security purposes, the passwords for each user level will not be printed in this manual. (Password information will be sent with the manual in a sealed envelope.) Select the LOGOUT button to return to the Guest level of access. Below are the five user levels and what functions each user has access to. Some activities may not be relevant for all HMI applications.

HMI Security Level Access Permissions

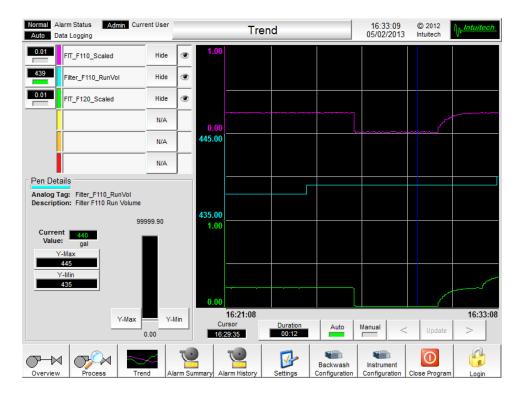
	Guest	View	Operator	Engineer	Administrator
View Login Screen	Χ	Х	Χ	Х	Χ
View Process Screens	Χ	Х	Χ	Х	Χ
View Trends		Х	Χ	Χ	Χ
View Alarms		Χ	Χ	Χ	Χ
Reset Alarms			Χ	Χ	Χ
Control Pumps, Valves, Blowers, etc.			Χ	Χ	Χ
Modify Email Alarms Email Settings					Χ
Disable/Enable Email Alarms				Х	Х
Change Auto and Manual Setpoints			Χ	Χ	Χ
Initiate Sequencer Steps			Х	Х	Х
Change Sequencer Step Times			Χ	Χ	Χ
Change PID Setpoints				Χ	Χ
Change PID Running Parameters				Х	Х
Change Alarm Limit Setpoints				Х	Χ
Change Data Logging				Х	Χ
Set Date and Time				Х	Χ
Close Program					Х

2. Alarm Screens

The date, time, and description of alarms will be displayed on the alarm screens. Once the conditions that triggered the alarm have been corrected, select the ALARM RESET button to acknowledge and reset all current alarms. Scroll through the alarms by selecting the PAGE UP and PAGE DOWN buttons on either of the alarm screens.

3. Instrument Displays

Each analog instrument has its own display screen. Access this screen by selecting the display button. Once selected, a similar screen will appear.



This screen will allow the user to set any high or low alarm limits associated with the instrument, as well as view a "quick-trend" of its recent activity. To add this analog signal to the main trending screen, simply press "Load" on one of the open Trend Pens.

4. Trending Screen and Pen Selection

The trend menu allows the operator access to the trending screens to analyze and view, in graphical/numerical format, the data coming from the system's instruments. When selected, a similar screen will be displayed

The time period displayed on the trending screen can be adjusted by selecting the desired time in hours and minutes on one of the TREND DURATION icons.

The AUTO selection allows users to view real time trends, while the MANUAL selection is for historical trends. An automatically updated trending screen will continually update itself. The manual update trending screens display a static "snap-shot" of information and will not automatically update.

If an analog signal is already selected, it will be displayed and can be manipulated from the upper-left corner of the trend screen. Each pen can either be viewed, or hidden using the VIEW/HIDE buttons. Once a pen is selected, the size of the Y-axis can be adjusted in the "Pen Details" section.

NOTE: In order to add a new analog signal to the trending screen, it must be activated from within its own display screen (as previously described).

Tap the screen at any point within the trend graph to move the vertical cursor (or select the < or > buttons to enact small moves). The color of the parameter at the top left of the screen corresponds with the color of the trend lines within the trending screen. The parameter value shown in the "Current Value" window, corresponds to the value on the graph at the position of the cursor.

5. Settings Menu Screens

The settings menu includes buttons to access data logging, e-mail alarms, and the date and time set screen.

6. Data Logging Screen

If the DATA LOGGING button is selected the following screen is displayed.

To operate data logging in automatic mode select the AUTO button. To set the interval at which the process parameters are recorded, activate the keypad by pressing the interval button and enter the desired interval (in seconds).

When in the automatic mode, the data-logging feature is only active when the system is active

(i.e. data are only logged for equipment in operation).

To operate data logging in manual mode select the ON button. In manual mode data are collected whether the system is running or not.

Selecting the OFF button will disable all data logging.

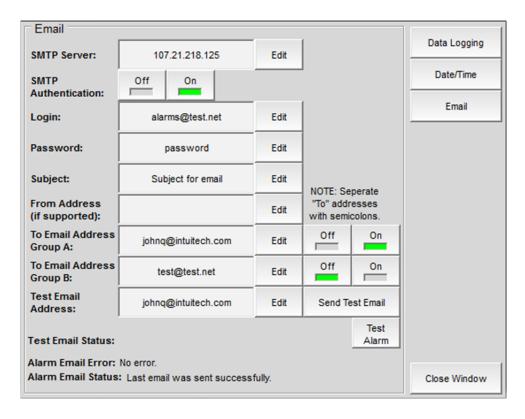
Data are stored on a removable USB flash drive located on the front of the control panel door underneath the enclosure shelf. It is NOT necessary to open the control enclosure to access this drive. It is recommended that the HMI is shut down to

remove the USB data drive. The data files can then be copied or moved from the USB flash drive to another computer for viewing. Data files are stored on the USB drive as .csv (comma separated variable) files, which can be opened with and saved as Microsoft® ExcelTM (.xlsx) files. The .csv files contain data columns with integrated column headers.

The first column in the .csv files correlates to the date and time the data were collected.

A second USB drive, located on the back of the HMI is used as a backup to the primary USB drive. This drive automatically logs data every five minutes. To gain access to this drive, the enclosure door will have to be opened. Disconnect power before opening the enclosure door to avoid potential electrical shock. There

are two USB "drives" plugged into the HMI. The red USB drive is the backup drive. The USB drive that is BLACK is the hard key for the software license. DO NOT REMOVE THE BLACK USB DRIVE as this will invalidate the software license.


ATTENTION: HOW MUCH DATA ARE YOU WILLING TO LOSE? Data should be retrieved and backed up on a separate computer regularly. How often this is performed should be based upon the amount of data loss you are willing to accept.

DANGER: Disconnect power to control panel before servicing to eliminate electrical shock and arc flash hazards.

Once the USB flash drive is reconnected to the HMI, the data files will continue to append to the previously existing data (if files were copied to the computer in the previous step) or new files will be created (if the files were removed in the previous step).

When the size of the file exceeds the entered "High Alarm Limit" (in Mb), an alarm will be annunciated (indicating "Total Data File Size High"). Since large text files can become virtually unmanageable, it is recommended that the operator clears or moves the saved data in the data-logging file before they become larger than 30 Mb. If the file size becomes greater than the "Shutdown Limit", an alarm will be activated indicating "Data Logging Stopped". At this point the data logging feature will shut down.

7. Email Alarms Screen

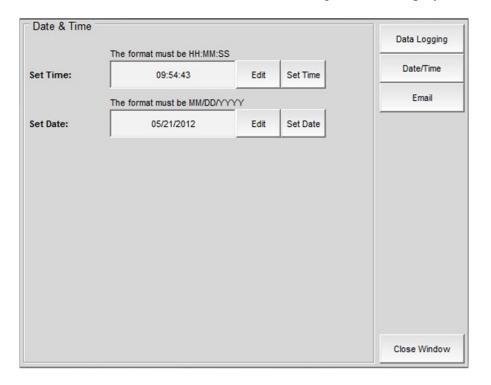
When web enabled, the HMI has the ability to send all alarm notifications to specified email addresses. The email notifications include the time and date of the alarm as well as the message generated by the alarm.

Administrator login is required to view or modify the SMTP Server IP, SMTP Authentication, Username, Password, Mail from Address, and Mail to Address 1. Without administrator login, these fields will be displayed as asterisks and cannot be accessed.

MAIL TO ADDRESS GROUP B

This field is identical to "Mail to Address Group A" except the administrator level of login is not required to modify the field. Specify any valid email address or multiple addresses separated by a semicolon (;). This can include cell phone email address (e.g. 8015551212@domain.com). Any alarms that occurred prior to email address changes (i.e. in the queue) will be sent using the old data. Messages are sent from the queue at 1-minute intervals.

TEST EMAIL

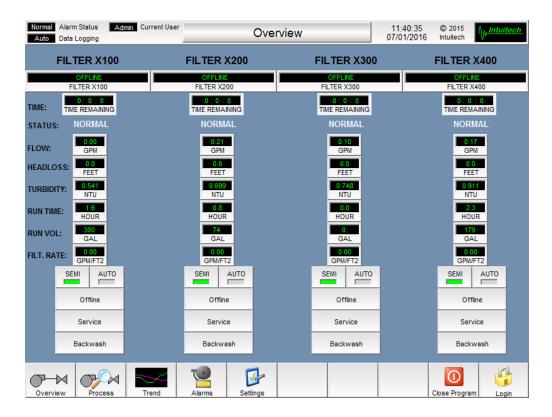

This field is provided to easily test the function of the email screen. Pressing the "Send Test Email" button will send a test email to the email address configured to its right. Pressing the "Test Alarm" button will generate a test alarm and send the email to everyone in Group A and Group B (as long as the group control is set to ON).

MAIL ERROR STATUS

This indicates the status of the last email attempt. If it reads "No error." then the last email was sent successfully. If other errors appear they will be similar to those most mail clients report when there is a failure. Please consult your network administrator if additional assistance is required.

8. Date/Time Screen

If the Date/Time button is selected the following screen is displayed.



The SET TIME and SET DATE buttons are used to set the current time and date. Use "Edit" to enable the keypad and enter the proper time or date. Once the correct time has been entered, press "Set Time" to move that time into the HMI memory.

NOTE: Ensure that the time and date are entered in the <u>exact format</u> as displayed. Include the necessary symbols (i.e. colon and slash marks) when entering in the time and date or the entry will be rejected.

9. Overview Screen

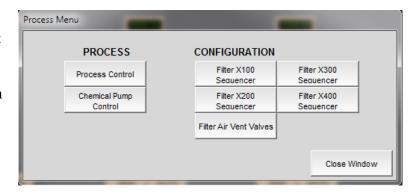
When the OVERVIEW button is selected, a similar screen is displayed.

The screen displays an overview of data from all the equipment process screens, along with control buttons for activating the sequencer. All instruments can be accessed from this screen.

Selecting the SEMI buttons will enable the OFFLINE, SERVICE, and BACKWASH control buttons.

In manual (SEMI) mode, following the manual step advance, if the SERVICE button is pressed the filter will begin servicing water, pressing the BACKWASH button will initiate a backwash cycle for the filter, and pressing the OFFLINE button will shut the filter components down. Backwashing will not be initiated automatically, and the filter will not re-enter service after a backwash.

Pressing the auto button (AUTO) will allow for fully automatic operation of the filter (in accordance with the sequence matrix). When operating in auto mode backwashing is initiated based on the high runtime, run volume, headloss or turbidity and the filter will automatically re-enter service after backwashing.


Refer to the sequence matrix for details of the sequencer operation.

ATTENTION: In manual or semi-auto mode, an operator can start, stop or interrupt the filter sequence in any step. Be aware that interrupting a backwash sequence may foul the backwash tank or otherwise allow debris to bypass the filter. The operator is responsible for all equipment operation when not operating in Auto mode.

NOTE: The alarm limits used to initiate backwash are found within the display buttons for each filter's headloss, runtime, run volume or turbidity.

10. Process Menu

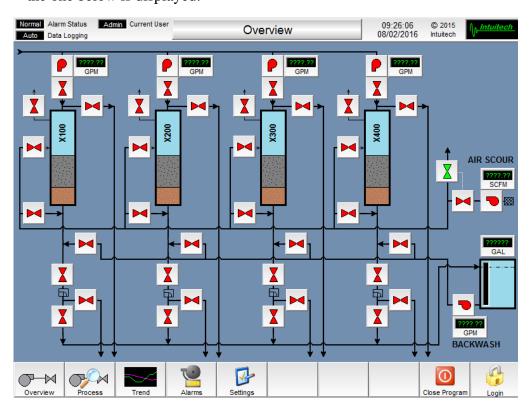
If the PROCESS button is selected, it will bring up the process menu, similar to the screen displayed. This screen provides access to all of the process control and configuration screens.

11. Series / Parallel Configuration

If the SERIES / PARALLEL button is selected, it will bring up the following screen. This screen provides acess to the system configuration.

In parallel configuration, each filter vessel acts as a completely independent system. In series configuration the first two filter vessels feed into the second two filters. This provides the ability to "double filter" the raw water.

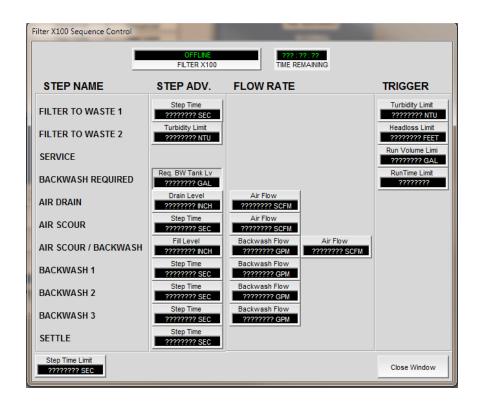
During series operation, the downstream filters rely on upstream filters for feed water. Therefore, anytime a filter enters backwash, the remaining filters will wait in the offline step. Because of this limitation, <u>AUTO mode is unavailable when operating in series configuration.</u>


NOTE: When operating in series configuration, valves DV-X002, DV-X003, and DV-X005 should be closed and valve DV-X004 should be open.

During series operation, the downstream filters rely on upstream filters for feed water. Therefore, anytime an upstream filter (1 or 3) enters backwash, the corresponding downstream filter (2 or 4) will wait in the offline step.

WARNING: When operating in series configuration, it is necessary to run the upstream filters at a slightly higher flow rate than the downstream filters. In this way, a small amout of water is constantly overflowing into the backwash tank, which provides constant flooded suction to the downstream feed pumps. A section of clear piping was incorporated so flooded suction to the pumps can be visually confirmed.

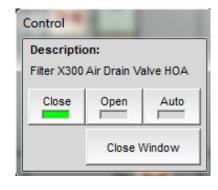
12. Process Control Screen


When the process control button is selected a process overview screen similar to the one below is displayed.

This process control screen allows access to all of the valves, feed pumps, backwash pump and air scour blower. Except for the chemical pump controls, all equipment on the module can be controlled through this screen.

13. Sequencing Controls

The sequencing controls used for backwashing can be accessed by pressing one of the Filter Sequencer buttons from the process menu . Similar buttons exist for each filter. When pressed, a screen similar to the one below is displayed.


Similar to the sequence matrix, this screen displays each of the steps included in the backwash sequence, listed in order, from the top-down. The step times, drain and fill levels, and flow rates used throughout the backwash sequence can be viewed and modified by pressing any of the EVENT buttons. Similar screens exist for each filter.

NOTE: The Required Backwash Tank Level (Req. BW Tank Lvl) is calculated from the backwash flow rates and times entered on this screen. If there is insufficient water in the backwash tank to perform a backwash, this value will be displayed in red. If this tank level is still low when a backwash attempts to initiate, a Backwash Tank Level Low alarm will be annunciated and the backwash will not begin until the tank level increases or the backwash configuration is modified.

14. Valve Controls

If any valve control button is selected a similar screen is displayed.


These control buttons designate what conditions open or close the valves. Pressing the AUTO control button will allow the valve to be controlled by the sequencer (activated from the Overview Screen). Pressing the CLOSE or OPEN

control buttons will actuate the valve independent of the sequencer.

15. PID Loop Control Screens

If any component (i.e. pump) using a PID control is selected, a similar screen is displayed.

NOTE: All module components which operate using PID control (listed below) will be controlled by a screen very similar to this one.

This screen displays important monitoring parameters, buttons for selecting control options, buttons for selecting auto or manual mode operation, and input buttons for entering the auto and manual set-points.

The DEVICE CONTROL buttons (in the upper right corner) designate what conditions cause the pump to energize. Pressing the AUTO control button will allow the pump to be controlled automatically by the sequencer. Pressing the OFF or ON control buttons will energize or de-energize the pump manually, independent of the sequencer.

The MODE buttons (auto or manual) designate which setpoint the pump will maintain. When the mode is set to AUTO, the pump will seek the auto setpoint (using the PID control loop). When set to MANUAL, the pump will simply maintain the manual setpoint (a percentage of the pumps maximum flow, with no flow control).

The PID Configuration section contains the tuning parameters for the pump control. The gain, reset, and rate values function as the tuning parameters for the

PID control loop. The Proportional–Integral–Derivative (PID) controller is a generic control loop feedback mechanism used to control equipment and maintain a setpoint. The PID controller attempts to correct for the discrepancy between a measured process variable and a desired setpoint by calculating and outputting a corrective action in order to adjust the process accordingly.

The PID controller calculation (algorithm) involves three separate parameters; the Proportional, the Integral and Derivative values (i.e. gain, reset, and rate, respectively). The Proportional value determines the reaction to the current error, the Integral determines the reaction based on the sum of recent errors and the Derivative determines the reaction based on the rate at which the error has been changing. A weighted sum of these three actions is used to adjust the process via a control element (such as the position of a control valve).

NOTE: The PID gain, reset, rate, and rate delay values for the feed pump and backwash pump are pre-tuned by the manufacturer and should not require further adjusting. Only qualified personnel should adjust values if it becomes necessary. Before adjusting, record the current values to use as a reference.

The PID ALARMS section contains the alarm deadband and alarm delay values, which define the conditions for the High and Low alarms. The alarm deadband delineates how much the process variable may vary before an alarm occurs. The alarm delay defines the time limit (in seconds) for how long that variable can remain out of range before an alarm occurs.

For example: Using a flow rate of 1.25 gpm, an alarm deadband value of 0.5 gpm and an alarm delay value of 60 seconds; if the flow rate fluctuates above 1.75 gpm or below 0.75 gpm for longer than 60 seconds, an alarm will occur.

NOTE: The pH adjustment pump screens also include buttons for selecting whether acid or caustic is being pumped to maintain pH. These buttons are not available on the standard chemical pump screens.

Similar screens exist for the following PID controlled components on the pilot:

- Feed Pump X100
- Feed Pump X200
- Feed Pump X300

- Feed Pump X400
- Backwash Pump X800
- Air Scour Blower X600

16. Pace Loop Control Screens

If any component (i.e. chemical pump) using a Pace control is selected, a similar screen is displayed.

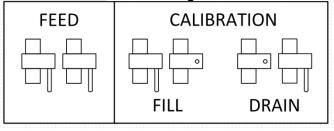
NOTE: All module components which operate using Pace control (listed below) will be controlled by a screen very similar to this one.

The screen displays monitoring parameters, control buttons, buttons for selecting auto or manual mode, auto and manual setpoint values, buttons for selecting which flow the pump will pace from (if applicable), along with; the solution concentration setpoint and pump min/max set-points.

The <u>Device Control</u> buttons designate which conditions will cause the pump to energize. The Mode buttons designate which setpoint the pump will maintain.

NOTE: The auto setpoint is entered in units of milligrams of chemical, per liter of water (feed flow through the module).

NOTE: Each chemical will display a PACE FROM option. Selecting SUM will cause the chemical pump to dose based on the sum of the feed flows from all filters currently in service. Selecting any of the filter numbers, will pace to the feed flow through that filter, and selecting BW will cause the chemical pump to dose based on the backwash flow rate.


Pump Calibration:

Each chemical pump needs to be calibrated to existing conditions before operating in auto mode.

To calibrate the pump for operation in auto mode, the flow capacity of the pump must be measured and entered. First, set the valve positions to FILL. Next, switch the pump mode to manual by selecting the MAN button. To determine the pump's maximum flow, access the manual setpoint keypad and enter 100%. Press the ON control button and operate the pump until the graduated cylinder is full of the chemical to be dispensed (make a note of the current chemical level). Next, set the valve positions to DRAIN and energize the pump for at 100% for 1 minute. After 1 minute of pumping, de-energize the pump and measure (in milliliters) the amount of chemical pumped from the graduated cylinder- enter this amount as the Pump Max setpoint. To determine the pump's minimum flow, repeat the process by operating the pump at the minimum manual setpoint percentage of 3% for one minute and measuring the chemical pumped. Enter this amount as the Pump

Min setpoint. Repeat the process for each pump used.

Enter the solution concentration of the chemical being pumped

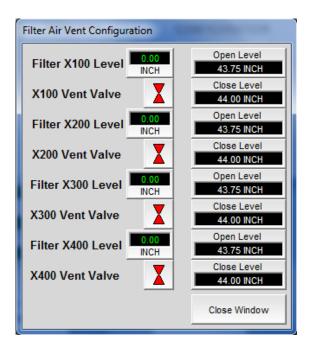
(units are in pounds of chemical per gallon of solution). Once calibration is complete, set the valve positions back to FEED.

NOTE: If an auto dosing setpoint is selected which the equipment is not able to achieve, a "calculation high" or "calculation low" indication will appear.

ATTENTION: If the chemical pump experiences a fault, the Pump Fault Alarm will be annunciated. **In addition to pressing the Alarm Reset button, it is necessary to cycle power to the pump in order to clear the alarm.** This can be accomplished by simply removing the wiring connector at the top of the pump, then reconnecting it.

Similar screens exist for the following Pace controlled components on the pilot:

- Chemical Pump X710
- Chemical Pump X720


- Chemical Pump X730
- Chemical Pump X740

• Chemical Pump X750

17. Filter Air Vents

If the FILTER AIR VENTS button is selected, the following screen is displayed.

The filter vent valves are designed to open if air becomes trapped in the filter vessel and is unable to escape during normal filtration. In this case, the vent valve will automatically open and slowly bleed the air out of the column, until the water level returns to normal. The open and close levels on this screen have been set at the factory and should not require further adjustment. Record previous setpoint values BEFORE modifying the values.

18. HMI Alarms and Conditions

All alarms generated by the equipment are summarized in this table. The "Message" column indicates the alarm text shown on the ALARM SUMMARY and ALARM HISTORY screens. The "Condition" column describes the logic that generates the alarm. The "Shutdown" column identifies whether the alarm will cause the pilot to shutdown.

Message	Condition	Shutdown
Test Email Alarm	Test email generated to test email function	
Data Log File Length Shutdown Alarm	File length greater than defined shutdown limit	
Data Log File Length High Alarm	File length greater than defined high limit	
Data Log interval Not Defined	Entered data logging time interval is invalid	
Data Logging Not Enabled	Data logging set to OFF	
PLC Power Failed Alarm	Main power failed	
Compressor Air Pressure Low Alarm	Air compressor pressure less than 50 psig for 2 seconds	Х
PLC Program Downloaded Alarm	New PLC program downloaded	X
Emergency Stop Alarm	Emergency stop button depressed NOTE: Rotate button clockwise to release before resetting alarm.	Х
Chemical Pump X720 Fault Alarm	Chemical pump motor has experienced a fault NOTE: Cycle power to the chemical pump (by disconnection wiring) to allow alarm reset.	
Blower X600 Not in Auto Alarm	Control not in auto mode	

Blower X600 Failed Alarm	Device commanded to run but not running after 30 seconds	Х
Blower X600 Flow High Alarm	Value outside of defined deadband for the specified delay time	
Blower X600 Flow Low Alarm	Value outside of defined deadband for the specified delay time	
Chemical Pump X710 Fault Alarm	Chemical pump motor has experienced a fault NOTE: Cycle power to the chemical pump (by disconnection wiring) to allow alarm reset.	
Chemical Pump X730 Fault Alarm	Chemical pump motor has experienced a fault NOTE: Cycle power to the chemical pump (by disconnection wiring) to allow alarm reset.	
Filter X100 Backwash Tank Level Too Low to Perform Backwash Alarm	Backwash tank level too low to perform currently configured backwash	
Filter X100 Headloss High Alarm	Value greater than defined limit for 30 seconds	
Filter X100 Vessel Pressure High Alarm	Value greater than 15 PSIG for 2 seconds	Х
Filter X100 Runtime High Alarm	Value greater than defined limit	
Filter X100 Run Volume High Alarm	Value greater than defined limit	
Chemical Pump X740 Fault Alarm	Chemical pump motor has experienced a fault NOTE: Cycle power to the chemical pump (by disconnection wiring) to allow alarm reset.	
Chemical Pump X750 Fault Alarm	Chemical pump motor has experienced a fault NOTE: Cycle power to the chemical pump (by disconnection wiring) to allow alarm reset.	
Filter X100 Step Time Too Long Alarm	Elapsed step time greater than defined limit.	Х
Filter X300 Headloss High Alarm	Value greater than defined limit for 30 seconds	
Filter X300 Vessel Pressure High Alarm	Value greater than 15 PSIG for 2 second	Х
Filter X300 Runtime High Alarm	Value greater than defined limit	
Filter X300 Run Volume High Alarm	Value greater than defined limit	
Filter X300 Step Time Too Long Alarm	Elapsed step time greater than defined limit.	Х
Filter X200 Backwash Tank Level Too Low to Perform Backwash Alarm	Backwash tank level too low to perform currently configured backwash	
Filter X200 Headloss High Alarm	Value greater than defined limit for 30 seconds	
Filter X200 Vessel Pressure High Alarm	Value greater than 15 PSIG for 2 seconds	Х
Filter X200 Runtime High Alarm	Value greater than defined limit	
Filter X200 Run Volume High Alarm	Value greater than defined limit	
Filter X200 Step Time Too Long Alarm	Elapsed step time greater than defined limit.	Х
Filter X300 Backwash Tank Level Too Low to Perform Backwash Alarm	Backwash tank level too low to perform currently configured backwash	
Filter X400 Backwash Tank Level Too Low to Perform Backwash Alarm	Backwash tank level too low to perform currently configured backwash	

Filter X400 Headloss High Alarm	Value greater than defined limit for 30 seconds	
Blower Flow Transmitter Failed	No transmitter signal for 30 seconds	Х
Alarm		^
Backwash Flow Transmitter	No transmitter signal for 30 seconds	X
Failed Alarm Filter X100 Level Transmitter	No transmitter signal for 20 accords	
Failed Alarm	No transmitter signal for 30 seconds	
Filter X200 Level Transmitter	No transmitter signal for 30 seconds	
Failed Alarm	The transmitter signarior so seconds	
Filter X300 Level Transmitter	No transmitter signal for 30 seconds	
Failed Alarm	The maniformition original for the descential	
Filter X400 Level Transmitter	No transmitter signal for 30 seconds	
Failed Alarm		
Filter X400 Vessel Pressure High	Value greater than 15 PSIG for 2 seconds	Х
Alarm		^
Filter X400 Runtime High Alarm	Value greater than defined limit	
Filter X400 Run Volume High	Value greater than defined limit	
Alarm		
Filter X400 Step Time Too Long	Elapsed step time greater than defined limit.	X
Alarm		
Filter X100 Feed Flow	No transmitter signal for 30 seconds	X
Transmitter Failed Alarm	No transcription of confidence of the confidence	
Filter X200 Feed Flow	No transmitter signal for 30 seconds	Χ
Transmitter Failed Alarm Filter X300 Feed Flow	No transmitter signal for 20 accords	
Transmitter Failed Alarm	No transmitter signal for 30 seconds	X
Filter X400 Feed Flow	No transmitter signal for 30 seconds	
Transmitter Failed Alarm	Two transmitter digital for de decented	X
Backwash Tank Level	No transmitter signal for 30 seconds	.,
Transmitter Failed Alarm		X
Backwash Tank Level Low Alarm	Value less than 10 gal for 2 seconds	Х
Filter X100 Feed Pump Flow	Value outside of defined deadband for the specified	
High Alarm	delay time	
Filter X100 Feed Pump Flow Low	Value outside of defined deadband for the specified	Х
Alarm	delay time	^
Filter X200 Feed Pump Not in	Control not in auto mode	
Auto Alarm		
Filter X200 Feed Pump Failed	Device commanded to run but not running after 30	X
Alarm	seconds Value outside of defined deadhand for the enecified	
Filter X200 Feed Pump Flow	Value outside of defined deadband for the specified	
High Alarm Filter X200 Feed Pump Flow Low	delay time Value outside of defined deadband for the specified	
Alarm	delay time	X
Chemical Cabinet X701 Leak	Leak detected in chemical cabinet	
Alarm		X
Chemical Cabinet X702 Leak	Leak detected in chemical cabinet	
Alarm		X
Filter X100 Pressure Transmitter	No Transmitter signal for 30 seconds	V
Failed Alarm		Х
Filter X200 Pressure Transmitter	No Transmitter signal for 30 seconds	Х
Failed Alarm		^
Filter X300 Pressure Transmitter	No Transmitter signal for 30 seconds	X
Failed Alarm		

	,	
Filter X400 Pressure Transmitter Failed Alarm	No Transmitter signal for 30 seconds	Χ
Filter X100 Feed Pump Not in Auto Alarm	Control not in auto mode	
Filter X100 Feed Pump Failed Alarm	Device commanded to run but not running after 30 seconds	Х
Filter X300 Feed Pump Not in Auto Alarm	Control not in auto mode	
Filter X300 Feed Pump Failed	Device commanded to run but not running after 30 seconds	Х
Backwash Pump Flow High Alarm	Value outside of defined deadband for the specified delay time	
Backwash Pump Flow Low Alarm	Value outside of defined deadband for the specified delay time	Х
Filter X100 Turbidity Transmitter Failed Alarm	No Transmitter signal for 30 seconds	
Filter X100 Turbidity High Alarm	Value greater than defined limit for 5 minutes	
Filter X200 Turbidity Transmitter Failed Alarm	No Transmitter signal for 30 seconds	
Filter X200 Turbidity High Alarm	Value greater than defined limit for 5 minutes	
Filter X300 Feed Pump Flow	Value outside of defined deadband for the specified	
High Alarm	delay time	
Filter X300 Feed Pump Flow Low Alarm	Value outside of defined deadband for the specified delay time	Х
Filter X400 Feed Pump Not in Auto Alarm	Control not in auto mode	
Filter X400 Feed Pump Failed Alarm	Commanded to run but not running after 30 seconds	Х
Filter X400 Feed Pump Flow High Alarm	Value outside of defined deadband for the specified delay time	
Filter X400 Feed Pump Flow Low Alarm	Value outside of defined deadband for the specified delay time	Х
Backwash Pump Not in Auto Alarm	Control not in auto mode	
Backwash Pump Failed Alarm	Commanded to run but not running after 30 seconds	Х
Filter X300 Turbidity Transmitter Failed Alarm	No Transmitter signal for 30 seconds	
Filter X300 Turbidity High Alarm	Value greater than defined limit for 5 minutes	
Filter X100 Air Drain Valve DV- X107 Not in Auto Alarm	Control not in auto mode	
Filter X100 Filter to Tank Valve DV-X108 Not in Auto Alarm	Control not in auto mode	
Filter X100 Air Vent Valve DV- X110 Not in Auto Alarm	Control not in auto mode	
Filter X200 Inlet Valve DV-X201 Not in Auto Alarm	Control not in auto mode	
Filter X200 Outlet Valve DV-X202 Not in Auto Alarm	Control not in auto mode	
Filter X200 Backwash Inlet Valve DV-X203 Not in Auto Alarm	Control not in auto mode	
Filter X400 Turbidity Transmitter Failed Alarm	No Transmitter signal for 30 seconds	
Filter X400 Turbidity High Alarm	Value greater than defined limit for 5 minutes	

Filter X100 Inlet Valve DV- X101Not in Auto Alarm	Control not in auto mode
Filter X100 Outlet Valve DV-X102	Control not in auto mode
Not in Auto Alarm	Control not in date mode
Filter X100 Backwash Inlet Valve	Control not in auto mode
DV-X103 Not in Auto Alarm	
Filter X100 Backwash Outlet	Control not in auto mode
Valve DV-X104 Not in Auto	
Alarm	O stal of the desired
Filter X100 Filter to Waste Valve DV-X105 Not in Auto Alarm	Control not in auto mode
Filter X100 Air Scour Inlet Valve	Control not in auto mode
DV-X106 Not in Auto Alarm	Solition not in date mode
Filter X200 Backwash Outlet	Control not in auto mode
Valve DV-X203 Not in Auto	
Alarm	
Filter X200 Filter to Waste Valve	Control not in auto mode
DV-X205 Not in Auto Alarm	Control not in quito mode
Filter X300 Filter to Waste Valve DV-X305 Not in Auto Alarm	Control not in auto mode
Filter X300 Air Scour Inlet Valve	Control not in auto mode
DV-X306 Not in Auto Alarm	Solition not in date mode
Filter X300 Air Drain Valve DV-	Control not in auto mode
X307 Not in Auto Alarm	
Filter X300 Filter to Tank Valve	Control not in auto mode
DV-X308 Not in Auto Alarm	
Filter X300 Air Vent Valve DV-	Control not in auto mode
X310 Not in Auto Alarm Filter X400 Inlet Valve DV-X401	Control not in auto mode
Not in Auto Alarm	Control not in auto mode
Filter X200 Air Scour Inlet Valve	Control not in auto mode
DV-X206 Not in Auto Alarm	
Filter X200 Air Drain Valve DV-	Control not in auto mode
X210 Not in Auto Alarm	O stal of the desired
Filter X200 Filter to Tank Valve	Control not in auto mode
DV-X208 Not in Auto Alarm Filter X200 Air Vent Valve DV-	Control not in auto mode
X210 Not in Auto Alarm	Control He date Hode
Filter X300 Inlet Valve DV-X301	Control not in auto mode
Not in Auto Alarm	
Filter X300 Outlet Valve DV-X302	Control not in auto mode
Not in Auto Alarm	
Filter X300 Backwash Inlet Valve	Control not in auto mode
DV-X303 Not in Auto Alarm Filter X300 Backwash Outlet	Control not in auto mode
Valve DV-X304 Not in Auto	Control not in auto mode
Alarm	
Filter X400 Outlet Valve DV-X402	Control not in auto mode
Not in Auto Alarm	
Filter X400 Backwash Inlet Valve	Control not in auto mode
DV-X403 Not in Auto Alarm	
Filter X400 Backwash Outlet	Control not in auto mode
Valve DV-X404 Not in Auto Alarm	
AIGITI	

Filter X400 Filter to Waste Valve	Control not in auto mode	
DV-X405 Not in Auto Alarm		
Filter X400 Air Scour Inlet Valve	Control not in auto mode	
DV-X406 Not in Auto Alarm		
Filter X400 Air Drain Valve DV-	Control not in auto mode	
X407 Not in Auto Alarm		
Filter X400 Filter to Tank Valve	Control not in auto mode	
DV-X408 Not in Auto Alarm		
Filter X400 Air Vent Valve DV-	Control not in auto mode	
X410 Not in Auto Alarm		
Filter X400 Inlet Valve DV-X401	Control not in auto mode	
Not in Auto Alarm		
Filter X300 Backwash Outlet	Control not in auto mode	
Valve DV-X304 Not in Auto		
Alarm		
Filter X400 Outlet Valve DV-X402	Control not in auto mode	
Not in Auto Alarm		
Filter X400 Backwash Inlet Valve	Control not in auto mode	
DV-X403 Not in Auto Alarm		
Air Blower Block & Bleed Valves	Control not in auto mode	
DV-X601 & DV-X602 Not in Auto		
Alarm		
Chemical Cabinet 1 Leak Alarm	Chemical cabinet leak detected for 5 seconds	X
Chemical Cabinet 2 Leak Alarm	Chemical cabinet leak detected for 5 seconds	Х

NOTE: Not in Auto Alarm: This alarm does not indicate an operational failure. It is simply an indicator to remind the operator that a given process is under manual control.

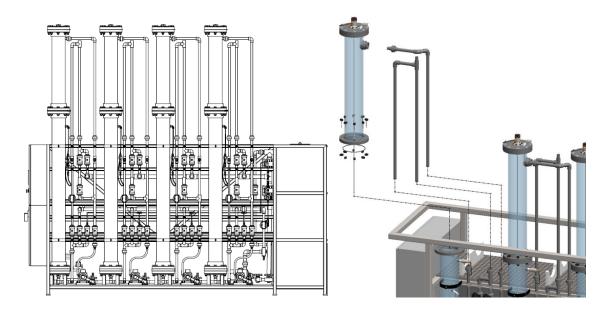
WARNING: Equipment protection is enabled only when control is in AUTO. Operator is responsible to protect equipment from damage when control is not in AUTO. Equipment not operating in auto is displayed on the alarm summary screen.

STARTUP

1. Pre-Startup Procedures

A. Electrical Installation

DANGER: All electrical connections shall be made by a qualified electrician.


B. Media-Installation

Disassemble the upper portion of the filter vessels to install media. If using a dual media filter, you may consider backwashing each media separately during the initial installation. For example, if sand and anthracite are being used, the sand would be loaded first. Once the sand is installed, a backwashing of the vessel for 15-30 minutes may be necessary to purge the sand of fines that can lead to premature filter clogging, or slip through the media support and contaminate the backwash tank. Once backwashing is complete and the water exiting the filter is clear, it may be necessary to manually remove the top layer of fines. Once the sand is thoroughly washed, the anthracite would be loaded and backwashed according to the same procedure. (Virgin anthracite will often require a manual removal of the top 1/4" to 1/2" of fines after the initial backwash. These fines can be distinguished from the rest of the media as a fine, dense, uniform layer on top of the anthracite.) Keep in mind, backwashing times and methods will vary by application and the above example may not apply to all situations.

ATTENTION: When installing media, ensure there is 2–3 feet of water in the bottom of the vessel before adding media. This will add a cushioning effect to the falling media and help minimize the possibility of damage to the media support plate.

C. Top Section of Vessels Installation

Equipment is shipped with the top sections of the filter vessels disassembled. Assembly of the upper vessels and piping is similar to the drawings below. Also refer to the General Arrangement drawings in Appendix-A of this manual for project-specific assembly arrangements.

NOTE: When installing, take care that <u>all</u> o-rings are installed with their corresponding connections or the assembly will leak. Be sure to individually clean and thoroughly blow/wipe out all grooves in connecting flanges where o-rings are installed. <u>Failure to do this may result in leakage</u>. Tighten flanges by hand to the point where the opposing edges come into contact with each other. Do not over tighten or damage could occur.

NOTE: Since the filter vessels are pressurized, the backwash pump (instead of a feed pump) must be used to fill each vessel with water for the first time.

D. Gravity Waste vs. Pressure Waste

The Filter Module is equipped with two different waste lines, a gravity waste and a pressurized waste. As indicated by their names, the pressurized waste may be piped into a tank (with existing back-pressure), but the gravity waste must be run directly to a floor drain (or equivalent). Do not pipe the gravity waste against more than six inches of headloss. Excessive back-pressure on this line may cause sputtering and back spray from the filter overflow weirs.

ATTENTION: Do not connect process lines to field piping smaller than the sizes listed on drawings. Doing so may cause unpredictable equipment operation, backflow and possible flooding.

E. Open Process Connections

Open all process valves required for supply to the equipment. These are not the valves on the equipment but field valves that may need to be opened to supply water to the equipment.

F. Backwash Tank

The backwash tank must be filled with clean water prior to startup.

NOTE: Never use raw water for backwash supply.

G. Pump Inspection

1. Feed Pumps

Verify that each pump is aligned correctly and that the shaft rotates without binding.

2. Backwash Pump

Bleed all air from the backwash pump before operating. Failure to do this will result in poor pump performance and possible damage. To bleed air from the pump, first fill the backwash tank with water then open the air bleed located above the outlet of the pump and allow any trapped air to escape.

ATTENTION: All centrifugal pumps are prone to air binding. Bleed all air from the following pumps before operating. Failure to do this will result in poor pump performance and possible damage. To bleed air from these pumps, first allow the inlet (suction) piping to the pump to fill, then open the air bleed located above the outlet (discharge) of the pump (or loosen a union) and allow all trapped air to escape.

• Backwash pump X800

WARNING: <u>Do not</u> run this pump dry. Do not deadhead pump for more than 30 seconds

H. Fill Filter Vessels

While in operation the filter vessels are pressurized and must therefore be initially filled using the backwash pump (i.e. from the bottom up). This will allow excess air inside the vessels to escape. The backwash inlet and backwash outlet valves can be opened manually, then energize the backwash pump by setting it to ON.

2. Startup Procedures

- A. Turn on main disconnect for Filter Module
- B. Log into HMI
- C. Fill the backwash tank with clean water.
- D. Go to the Process Control Screen and manually open the following valves: DV-X103, DV-X104, DV-X203 DV-X204, DV-X303, DV-X304, DV-X403 and DV-X404.
- E. Open the Backwash Pump control screen and set the MODE to manual. The Manual setpoint should be between 40% and 70%. Bleed all air from the pump head. Turn the Control to ON to begin filling the filter vessels with water.
- F. When all four filter vessels are full, turn the backwash pump control to Auto, and set all the open valves back to Auto.
- G. Set all pump control and alarm set-points are set at desired values (pump settings, alarm limits, backwash configurations, etc.)
- H. Verify all required component controls to Auto (feed, chemical and backwash pumps, valves, etc.).
- I. Verify that all necessary manual valves are open/closed for servicing water.
- J. Verify proper hand valve positions for parallel or series operation.
- K. Energize each filter from the Overview screen and begin to service water.
- L. If operating in manual mode, initiate a backwash sequence once headloss, turbidity, run volume or runtime has increased to undesirable levels. When operating in auto mode, backwash will be initiated based on configured alarm limits.

3. Backwashing

As explained in the HMI Operation section earlier, backwashing is initiated either automatically (based on the alarm limits entered in the HMI) or manually (from the filter summary screen). However, if the water level in the backwash tank is less than the displayed required backwash tank level, the backwash sequence will not initiate for the filter in question. The required backwash tank level is calculated using the flow rates and step times entered by the operator in backwash configuration screen. If the required backwash tank level is displayed in red, then the water level in the backwash tank is too low to perform the currently configured backwash. Reduce backwash flow rates, step times or wait for the water level in the tank to increase to allow the backwash to initiate.

NOTE: If sputtering or back-spray is observed from the weirs during backwashing, it may be necessary to lower the air flow rate during that particular step.

EQUIPMENT OPERATION

1. Standard Operation

A. On-Board Air Supply

The Filter Module is equipped with an air compressor and a rotary air blower. The air compressor (X900) is used exclusively for actuating the process valves. The air blower (X600) is used to provide air for the "air scour" and the "air drain" steps during backwash.

NOTE: If the air compressor pressure drops below 50 psig the pneumatic valves may no longer actuate properly and the filter module will shut down. Pressure is displayed on the pressure indicator PIT-X900 inside the control panel or on the dial gauge mounted to the compressor.

B. Water Flow Meters

Each filter vessel and the backwash pump are equipped with a dedicated flow meter to measure water flow into the filter. Flow values are displayed on the flow meter display as well as the HMI (in gpm). These flowmeters have been configured at the factory and no further adjustment or configuration should be necessary.

C. Air Flow Meter

The air blower flow rate is measured using a compressed air flow transmitter. This flowmeter measures the air scour flow rates and the flow rate for the pre-air-scour "drain down" step. Flow values are displayed on the flow meter display as well as the HMI (in SCFM. This transmitter has been configured at the factory and no further adjustment or configuration should be necessary.

D. Pneumatic Valve Solenoids

All pneumatic valves on the filter module are controlled using the air solenoid manifold inside the electrical enclosure. Each valve uses compressed air to open and an internal spring to close. In addition, each valve can be manually overridden from within the electrical enclosure. To override a valve, insert a small flat-blade screwdriver into one of the blue actuator "buttons" (12 or 14) and rotate it 90° clockwise. To release, simply rotate 90° counter-clockwise.

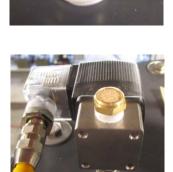
NOTE: Intuitech recommends that valves only be operated from the VALVES screen in the HMI. This manual override should only be used if necessary. **Remember to disengage the override when finished.**

The piping connecting the air scour blower to the filter vessels is equipped with several redundant protection systems designed to prevent water from entering the blower unit. First, a small drain orifice is always open at the discharge of the blower to ensure

any coalescing water is expelled before it can cause damage to the blower components. A check valve is installed to keep water from flowing backwards into the blower, and finally, a block-and-bleed valve system is used. The normally closed valve DV-X601 and the normally open air valve (DV-X602) are operated together. Installed at a low point in the piping, the bleed valve is always open to drain water and only closes when the air blower is in operation, creating a positive pressure and restricting any backwards flow of the water. The block valve is normally closed, blocking the path of water to the blower, only opening when the blower is running.

F. Filter Vessel Level Transmitters

Water levels in the filter vessels are measured using the transmitters attached to the stainless steel rod located in the center of each vessel (guided wave radar type). Water levels are required to control the Air Drain-Down and Air Scour/Backwash steps (steps 5


and 7 respectively). When entering the level set-points for these steps, zero is defined as the bottom edge of the steel rod.

G. Filter Vessel Pressure Relief

As a safety measure, each filter vessel is equipped with a pressure relief valve located on top of the upper filter vessel. This valve is a mechanical device and will open at 15 psi venting excess pressure to atmosphere.

H. Filter Column Vent Valve

During normal system operation, water levels are maintained at approximately 4 to 6 inches below the top of the filter column. If the water level in the filter column drops below the operational lower limit, excess air will be evacuated from the filter column until the water level is restored. The flow rate of evacuated air is regulated using a flow restrictor to prevent rapid water-level fluctuations (and headloss fluctuations) as a result of an uncontrolled release.

SHUTDOWN

1. Shutdown Procedures

A. Disconnect Electrical Power

All electrical connections are to be isolated and disconnected by qualified personnel.

B. Disconnect Process Connections

All process connections (water, chemical, etc.) should be isolated and disconnected by qualified personnel.

C. Draining Equipment

Drain all water from equipment before storage to prevent biological growth and freeze-damage. This includes draining all filter vessels, tanks, piping, pump housings, instruments, and opening <u>all</u> valves. Some unions and fittings may need to be loosened to ensure complete drainage.

NOTE: Use caution when manually opening pneumatic valves. If water is allowed to enter the air scour blower X600 it will be destroyed. Allowing water to enter the blower will void all manufacturer warranties.

D. Media Removal

The equipment is not to be transported while containing media. To avoid damage, all media is to be removed from filter vessels before the equipment is transported.

For 6 inch diameter filter vessels or smaller, it is possible to tilt the vessel over and dump the media out. To accomplish this, first remove the upper section of the filter vessel. Next, remove the two black pipe-straps restraining the lower filter vessel, and disconnect all pipes and tubing attached to the filter. Take care not to damage the flange assemblies, any sample ports, or piping connections while tipping the vessel over. Two people will be required to safely tip the filter vessel. A water hose can be used to help wash media out of the vessel. During reassembly, ensure the vessel is properly aligned before reattaching the vessel pipe-straps or reconnecting any rigid piping.

A wet/dry shop vacuum is the recommended method for media removal from filter vessels greater than 6 inches in diameter, but it is generally the easiest method for all filter vessels. Remove the upper section of the filter vessel in order to vacuum out the media. Extra vacuum hose will be necessary to provide the required reach. Several rigid, straight sections of vacuum hose can be connected to access the media inside the vessel itself. Always follow safe practices, do not place the vacuum on top of the frame during this process and make sure the filter is accessed from a stable platform.

NOTE: <u>Do not</u> disassemble the bottom filter vessel flange assemblies at any time. It is not necessary to do so in order to remove media.

E. Filter Vessels and Weir Piping Disassembly

Disassemble top section of vessels and corresponding piping. The upper sections of filter inlet and weir piping are to be removed for storage or shipping.

F. Secure Loose Parts

Any loose parts should be properly secured and stored with equipment.

MAINTENANCE

1. General

All maintainable equipment is listed below, along with suggested maintenance procedures and replacement parts. Replacement parts can be purchased through Intuitech, Inc. A suggested maintenance schedule is provided for components that can be maintained on a timetable. However, maintenance intervals are affected by factors such as environment, runtime, and water quality. **Operational experience is the most important factor when formulating a maintenance timetable.** The maintenance timetable in this manual is provided as a recommendation only, actual maintenance schedules will vary by application.

2. Maintainable Equipment

A. Feed Pump Assemblies (X100, X200, X300, X400)

Motor - Mfr: Oriental, PN: BHI62ST-A

Coupling - Mfr: Lovejoy, PN: 685144-10406

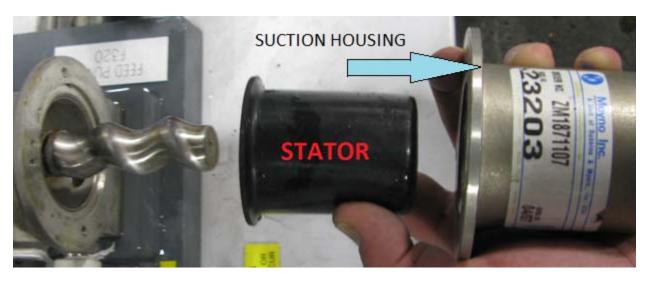
Pump head - Mfr: Moyno, PN: 23203 Stator - Mfr: Moyno, PN: 330-6385-120

Maintenance information:

1. Pump head maintenance

The filter feed pumps require a minimum amount of maintenance. Maintenance includes routine cleaning with regular stator and coupling inspection.

2. Coupling maintenance


The rubber spider coupling connecting the two ends of the coupling assembly (between the pump head and motor) should be periodically checked for wear. Replacement is necessary if excessive slop or noise is observed between the pump and motor couplings, or if the spider coupling appears cracked or broken.

3. Stator maintenance

The progressive cavity pump stator may need to be replaced if the pump performance decreases. Several factors can affect stator life, including runtime, pump speed, water quality, etc. Over time the pump speed will increase to maintain the same flow rate. This is a sign the stator is wearing. If the pump cannot maintain the desired flow rate at a speed of 100%, then the stator should be replaced. Replace the stator by first removing the four screws holding the suction housing to the pump body (red arrows). Set suction housing aside.

Slide old stator off the rotor and replace with new stator. Do not "unscrew" the old stator, or "screw" the new stator into place. Simply push or pull the stator straight on-to or off-of the rotor. (Rotating the spiral pump shaft may cause it to loosen and become detached.) When installing the new stator make sure the edges of the stator seal up within the groove in the pump body. Replace screws.

B. Backwash Pump Assembly (X800)

Pump – Mfr: Grundfos, PN: CM1-2 A-S-G-E-AQQE-E-A-A-N Maintenance information:

1. General

After an extended operational time or during shipping, the bolts connecting the pump body to the motor or the pump cover to the pump body may loosen. Tighten these bolts periodically. Also, if the pump has been out of use for an extended period of time, tighten all fasteners before the pump is used again.

2. Troubleshooting

The backwash pump X800 is a centrifugal pump. This type of pump is very sensitive to air being trapped in the pump head. If the pump does not create positive flow, of the flow rate is less than typical, there is likely air trapped in the pump head. Stop the pump, open a bleed valve or loosen a union on the discharge side of the pump to allow all trapped air to escape. Once there is a steady flow of water exiting the pump, close the bleed valve (or tighten the union) and re-energize the pump. It may require several of these "bleed cycles" before all of the air is purged from the pump head.

ATTENTION: Do not run the pump dry. Do not deadhead for more than 30 seconds. Failure to follow these directions will result in pump failure.

C. Air Compressor (X900)

Mfr: Werther International, PN: P 50-TC AL Maintenance information:

1. Air Filter

Inspect air filter periodically. Clean filter with soap and water as necessary. Squeeze excess moisture from filter and allow it to dry before re-installing. If filter becomes clogged or damaged, replace it.

NEVER clean filter with a flammable liquid or solvent. Explosive vapors can accumulate in the air tank and cause an explosion, resulting in injury or

death. DO NOT operate air compressor without an air filter.

2. Compressor Oil

Inspect compressor oil level monthly. Oil level should fill half of the level sight dome. Top off as required. Entire oil volume should be replaced yearly. Manufacturer recommends draining oil by removing piston housing and dumping contents.

D. Air Preparation Assembly (X900)

Mfr: SMC, PN: CHS20-ND2-Z AMG150C-N02BC AM150C-N02C-T AR20K-N02E-Z

Maintenance information:

1. Filter Element

The SMC air prep assembly contains a filter replacement indication. If the red indicator pops up and fills the clear window completely (red arrow) the filter element should be replaced.

E. Air Scour Blower (X600)

Mfr: Becker, PN: 163191WD Maintenance information:

1. Pressure Regulator

The integral pressure regulator on the air scour blower has been tuned at the factory and does not require further adjustment. If regulator requires re-setting, rotate knob clockwise "+" until regulator is fully closed and then open regulator (clockwise or "-") ½ - ½ turn.

2. Air Filter

Inspect air filter periodically. Light dust and dirt can be removed by blowing the filter out with compressed air. Heavier deposits on the filter may necessitate filter replacement.

F. Universal Controller Assemblies (TUIT-X100, TUIT-X200, TUIT-X300, TUIT-X400)

Controller – Mfr: Hach, PN: sc200

Maintenance information:

1. General

For more detailed and step-by-step instructions for the controller assembly maintenance refer to the Hach sc200 user manual included on the CD-ROM.

2. Controller Maintenance

Clean: Periodically inspect enclosure exterior for cleanliness, wipe thoroughly with a damp cloth if needed.

Fuse Replacement: The instrument contains two main fuses. Repeatedly failing fuses are an indication that an equipment problem could exist. Refer to manufacturer's manual for fuse loading.

G. Turbidimeter Analyzer (TUE-X100, TUE-X200, TUE-X300, TUE-X400)

Sensor – Mfr: Hach, PN: Ultra-Turb Controller – Mfr: Hach, PN: sc200

Maintenance information:

1. Sensor Maintenance

Frequency of required maintenance will depend on the installation, sample type, and water quality. Operational experience will dictate actual maintenance schedules. Maintenance requirements of the UltraTurb include regular cleaning of the measuring chamber and periodic replacement of the wiper profiles and desiccant bags. Refer to the UltraTurb user manual for the full procedure. A suggested maintenance schedule is defined in the UltraTurb user manual (included on the CD-ROM) and listed below.

• Wiper Replacement:

The rubber wiper profiles inside of the measurement chamber will require periodic replacement. The manufacturer recommends replacing the wipers after 1200 wipe cycles. Refer to the "Hach UltraTurb Plus SC Turbidity Sensor Manual" on CD ROM for replacement details.

2. Calibration

The Hach UltraTurb turbidimeter requires periodic calibration to ensure accurate measurements. Verification using a standard solution or a dry standard CVM was performed at Intuitech before shipping, but calibration should be performed periodically in the field. Refer to the "Hach Ultraturb Plus SC Turbidity Sensor Manual" on CD ROM for field calibration details.

H. Peristaltic Chemical Pump Assemblies (X710, X720, X730, X740, X750)

Motor Mfr: Intuitech Inc. PN:5110-200

Pump head Mfr: Masterflex, PN: OE-77800-50

Maintenance information:

1. General

Periodically inspect pump head for cleanliness. Use a mild detergent solution or 70% isopropyl alcohol only to clean the pump. **Do not immerse or use excess fluid.**

2. Peristaltic tubing maintenance and troubleshooting

The peristaltic pump tubing may need to be replaced if the pump performance decreases. Several factors including run-time, pump speed and tubing pressure will determine how long the tubing will last. <u>If the pump cannot maintain the desired flow rate or the tubing begins to leak, then the tubing should be replaced.</u>

Tube loading:

- 1. To load tubing, open pump by moving the actuator lever to the far left (counterclockwise, if pump is mounted vertically see Figures 1 and 2).
- 2. Insert a loop of tubing into one open tubing retainer, then between the occlusion bed and the rollers and into the other tubing retainer (see figure 3).
- 3. Position the tubing so that it seats firmly against the rollers and is centered on the length of the roller.
- 4. While holding the tubing ends, move the actuator lever back to the far right (clockwise) position, as shown in Figure 1. The pump will

automatically grip the tubing. Approximately 5 pounds of force must be applied to the actuator lever to fully close the pump and place the lever in its locked position. A similar amount of force is required to fully open the pump.

5. Connect pump tubing to the correct chemical inlet and outlet connections.

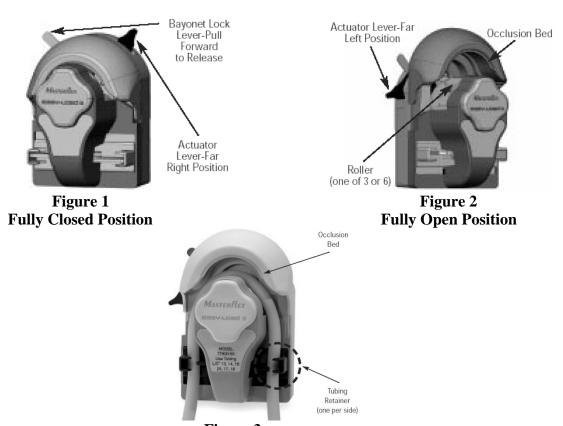
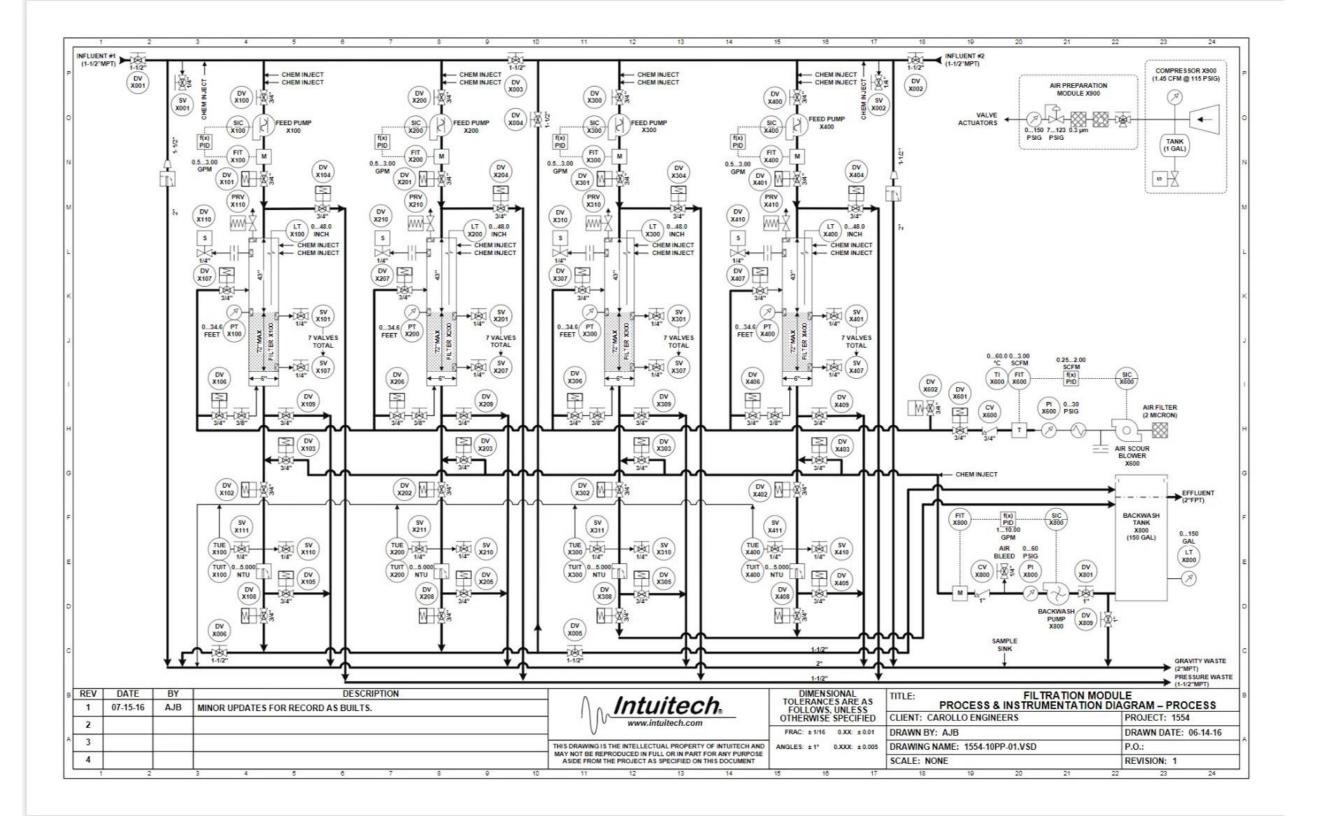


Figure 3
Tubing Path Through Pump - Loaded

NOTE: To unload tubing from the pump, turn off the drive. Then open the pump head by moving the actuator lever counterclockwise (left), as described above. The pump will open the tubing retainers and lift the tubing occlusion bed away from the tubing. Then remove the tubing from the pump.

WARNING: De-energize pump before servicing or injury may occur.


3. Maintenance Schedule

Component	Weekly	Monthly	Quarterly	Yearly
Progressive Cavity Pump Stator			X*	
Progressive Cavity Pump Coupling				X^*
Peristaltic Pump Head & Tubing		X*		
Air Compressor Coolant Level		X*		
Air Compressor Coolant Filter	X*			

44

Replace Air Compressor Coolant			X*
Air Compressor Package Pre-Filter		X*	
Air Scour Blower Filter	X*		
Turbidimeter Cleaning	X*		

^{*}Or as necessary

Appendix B SAMPLE PROCESSING AND METHODOLOGIES

Sample analysis for this pilot was performed by various test facilities. Additional bench-scale testing was relied upon to evaluate different coagulants, additional chemical dosing, potential disinfection by-product formation and determination of ozone demands.

1.1 Routine Water Quality Testing

1.1.1 COT DLTWTF Lab

Routine pilot water quality was predominantly performed by the COT Tippin Lab onsite. Samples were collected daily or weekly, depending on analyte. Test methods for these data are provided in Table B1. Daily UVT was measured at the pilot by the pilot operator.

Table B1 Sample Analytical Test Methods and Analysis Responsibility

	rest Methods and Analysis Responsibility	•
Parameter	Grab Sample Analytical Methods	Analysis Responsibility
Turbidity	SM 2130 B	City Lab
рН	EPA 150.1	City Lab
Apparent Color	SM 2120B	City Lab
Odor (TON)	SM 2150 B	City Lab
UVT ₂₅₄	SM 5910B	Carollo
Conductivity	SM 2510 B	City Lab
TDS (total dissolved solids)		City Lab
TOC	SM 5310 C	City Lab
Alkalinity	SM 2320B	City Lab
Hardness, Total	SM 2340C - RL is 1	City Lab
Calcium		City Lab
Magnesium	Not certified / EPA 200.8 - RL is 0.1 mg/L	City Lab
Chloride	EPA 300.0	City Lab
Sodium		City Lab
Iron		City Lab
Manganese		City Lab
Fluoride	EPA 300.0	City Lab
Bromate		City Lab
Nitrate	EPA 300.0	City Lab
Sulfate	EPA 300.0	City Lab
MIB ⁽¹⁾	SM 6040D	City Lab
Geosmin ⁽¹⁾	SM 6040D	City Lab

1.2 Water ARC®

A significant component of this dynamic piloting effort has come from bench-scale testing. Samples of the raw water, SIX effluent water, and filter effluent water were sent to the bench-scale testing facility so that chemical dosing requirements, impacts on ozone demand, and subsequent disinfection byproduct (DBP) formation and chloramines decay during the pilot may be evaluated. Subsequently, additional samples were sent to Water ARC® for testing, as needed. A summary of the test methods used for this testing is provided in Table B2.

Table B2 Water ARC® Test Methods

Parameter	Method	Range or MRL	Unit	Laboratory
Alkalinity	Hach Method 10280	2 to 200	mg/L CaCO₃	Water ARC®
АТР	Photomultiplier Tube (PMT)	4 x 10-12 to 1 x 10-6M ATP	tATP (pg ATP/g) or(pg ATP/mL)	Field
Conductivity	Hach Method 8160	0.01 to 200,000	μS/cm	Water ARC®
Monochloramine	Hach Method 10270	0.04-4.0	mg/L Cl₂	Water ARC®
Nitrate	Hach TNT835	0.2-13.5	mg/L NO₃-N	Water ARC®
Nitrite	Hach Method 10271			
ORP	Hach Method 10228	-2,000 to 2,000	mV	Water ARC®
Orthophosphate	Hach Method 10282	0.15-4.5	mg/L PO ₄ 3P	Water ARC®
рН	Hach Method 8156	2 to 14	S.U.	Water ARC®
SDS	SM5710C	Not applicable		Water ARC®
Sulfate	EPA 300.0A	0.5 (MRL)	mg/L	Contract Lab
Temperature	SM 2550B	0-50	°C	Water ARC®
TOC	EPA 415.3	0.0004-100	mg/L	Water ARC®
Free Ammonia	Hach Method 10268	0.05-1.5	mg/L NH₃-N	Water ARC®
Free Chlorine	Hach Method 10260	0.04-10	mg/L Cl₂	Water ARC®
Total Hardness	Hach Method 1284	3-100	mg/L CaCO₃	Water ARC®
Total Iron	EPA 200.7	0.05 (MRL)	mg/L	Contract Lab
Total Manganese	EPA 200.8	2 (MRL)	μg/L	Contract Lab

Parameter	Method	Range or MRL	Unit	Laboratory
Total Sulfide	Hach Method 8131	0.005-0.8	mg/L	Water ARC®
True Color	Hach Method 8025	3 (MRL)	PtCo	Water ARC®
Turbidity	Hach Method 10258	0-700	NTU	Water ARC®
UV254	SM5910B	0.009 (MRL)	AU	Water ARC® and Contract Lab
Zeta Potential	Electrophoretic Light Scattering	-500 - +500	mV	Water ARC®

1.3 Specialized Testing

1.3.1 LC-OCD

Organics speciation is an important component of the analysis of this pilot. LC-OCD was utilized to assess the relative organics speciation in the HR RW to understand the anticipated treatability effectiveness of the downstream processes with respect to TOC removal. Additional LC-OCD analysis was performed on pilot effluent samples and compared to that of the full-scale. This analysis was performed by the University of Boulder, XX lab. The test equipment and method is summarized below.

Analysis was conducted using an Agilent 1260 high performance liquid chromatography (HPLC) system. The system included an Agilent 1200 Series Vacuum Degasser, Agilent 1200 Series G1310A Isocratic Pump, Agilent 1260 Infinity II Vialsampler, Toyopearl HW-50S column (internal diameter (ID) 20 mm x 25 cm, 92 mL total volume), Agilent 1260 Infinity Series G1315D Diode Array Detector (DAD), and a Sievers M9 Total Organic Carbon (TOC) Analyzer. Agilent OpenLab software (Rev. C01.09) captures data directly from the absorbance detector while data from the TOC was transferred to the software using an Agilent Universal Interface Box II in voltage units, and then converted to [TOC] (ppb).

The system was operated utilizing injection volumes of 1.8 mL, a flow rate of 0.5 mL/min, and a phosphate buffer mobile phase (0.0016M Na2HPO4, 0.0024M NaH2PO4, and 0.0031M Na2SO4, pH 6.8, ionic strength 0.1M). Following collection, samples were passed through a 0.45 μ m filter, spiked with a concentrated phosphate buffer (0.016M Na2HPO4, 0.024M NaH2PO4), and 0.025M Na2SO4 to match the mobile phase ionic strength, and stored in combusted amber glass bottles at (4-5 deg C) prior to analysis.

Appendix C SUPPLEMENTARY WATER QUALITY DATA AND PLOTS

1.1 Overall Pilot

The below graphs provide supplementary data for the SIX pilot at DLTWTF.

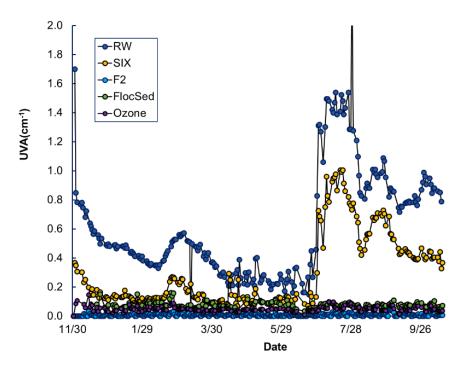


Figure 1 Pilot UVA

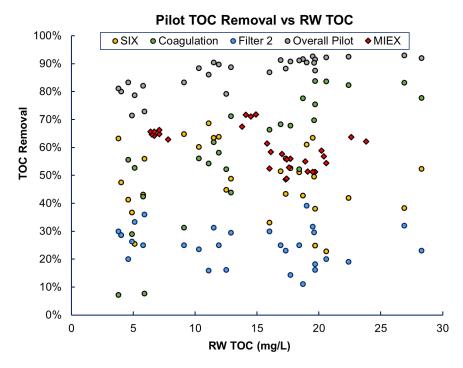


Figure 2 Pilot TOC Removal vs RW TOC

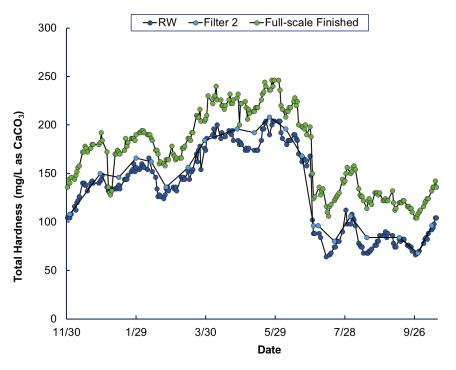


Figure 3 Pilot and Full-scale Total Hardness

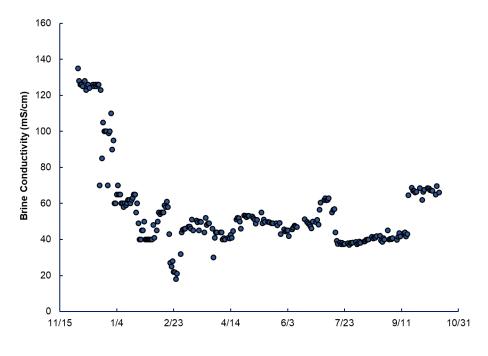


Figure 4 SIX Brine Conductivity (1x Brine Setpoint)

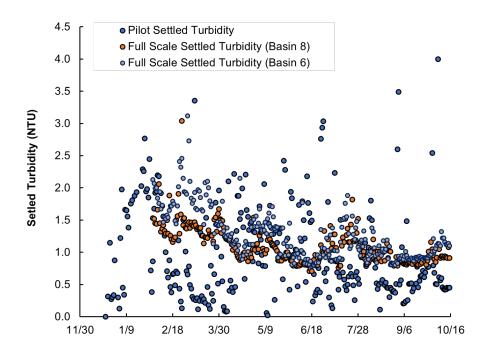


Figure 5 Full-scale and Pilot Settled Turbidity

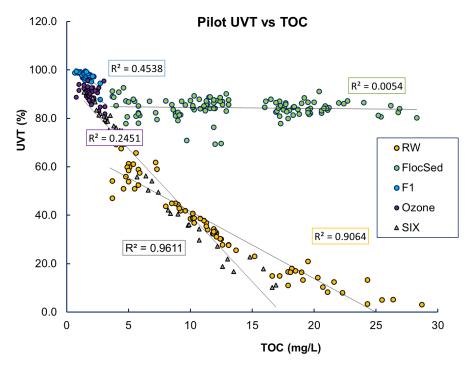


Figure 6 Pilot Effluents- UVT vs. TOC Correlation

1.2 Filters

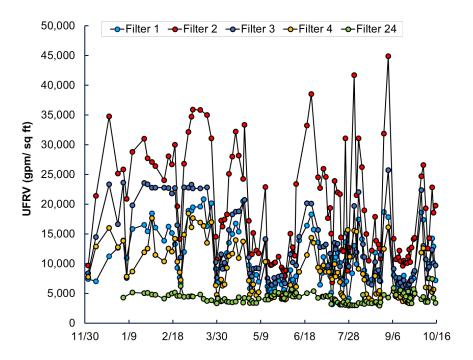


Figure 7 Pilot and Full-scale UFRVs

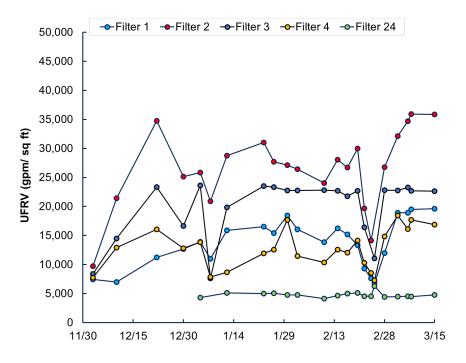


Figure 8 Pilot and Full-scale UFRVs (Phase 1)

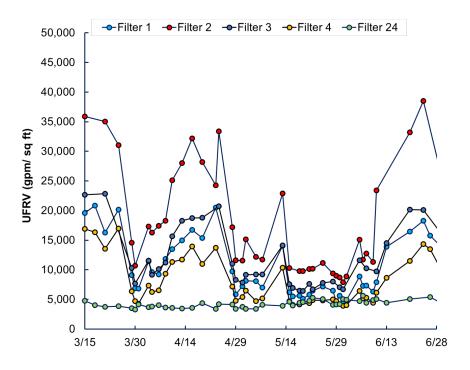


Figure 9 Pilot and Full-scale UFRVs (Phase 2)

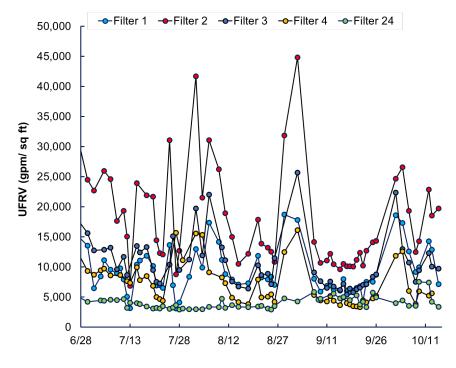


Figure 10 Pilot and Full-scale UFRVs (Phase 3)

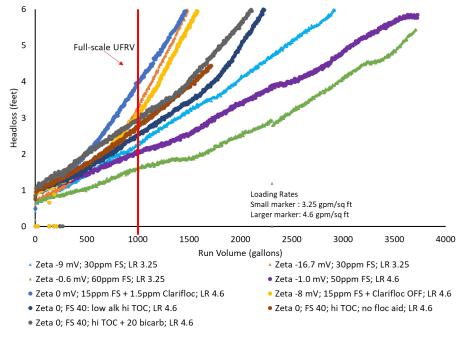


Figure 11 Filter 1 Headloss with Ferric Sulfate Coagulation

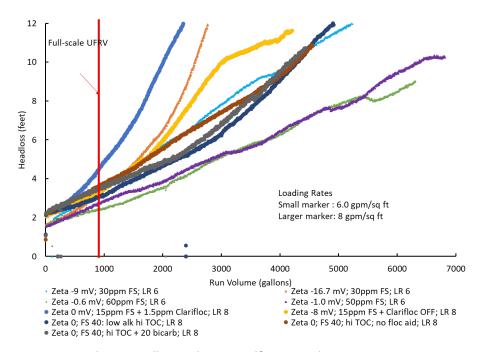


Figure 12 Filter 2 Headloss with Ferric Sulfate Coagulation



Figure 13 Filter 3 Headloss with Ferric Sulfate Coagulation

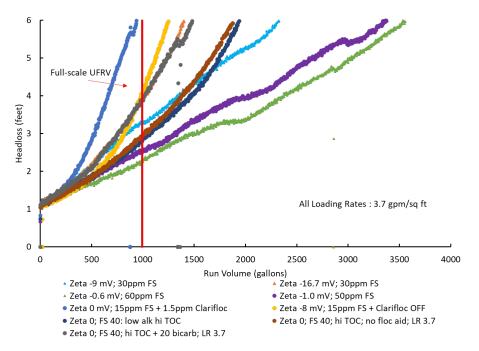


Figure 14 Filter 4 Headloss with Ferric Sulfate Coagulation

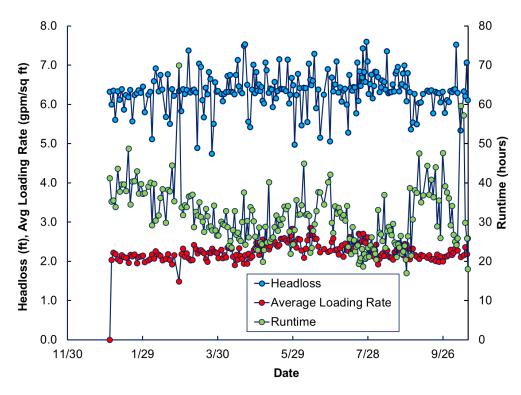


Figure 15 Full-scale Filter #24 Operations during pilot testing

1.3 Chlorine Demand/Decay, SDS, DBP

Three rounds of simulated distribution system (SDS) and DBP formation testing were performed. Tests included both free chlorine and monochloramine disinfection. The first two rounds (7/20 and 8/17) targeted 4 mg/L free chlorine at 10 min CT; the last round (10/12) targeted 2.75 mg/L free chlorine at 10 min CT, per request by COT. For both full-scale and pilot, samples did not exceed DBP MCLs with chloramination. Pilot samples disinfected with free chlorine stayed within MCLs for HAAs; however THM MCLs were exceed with free chlorine by day 3-5. Full-scale exceeded DBPs MCLs with free chlorine for each sample. Figure 16 through Figure 27 show the results of this testing.

1.3.1 Pilot Free Chlorine

Pilot Free Chlorine Residual Decay Curve

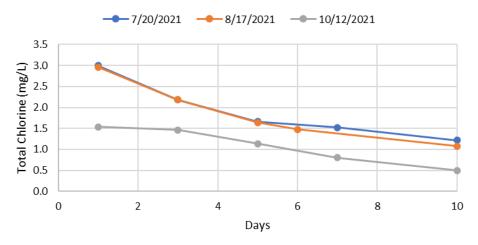


Figure 16 Pilot Free Chlorine Decay Curve

Pilot HAA Formation with Free Chlorine

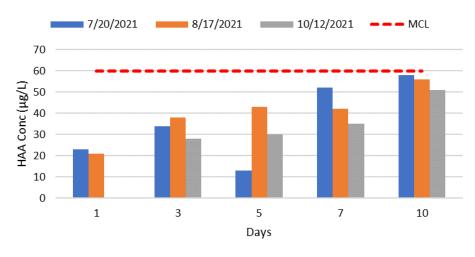


Figure 17 Pilot HAA Formation with Free Chlorine

Pilot THM Formation with Free Chlorine

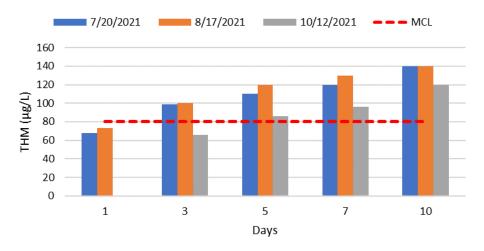


Figure 18 Pilot THM Formation with Free Chlorine

1.3.2 Pilot Chloramine

Pilot Chloramine Residual Decay Curve

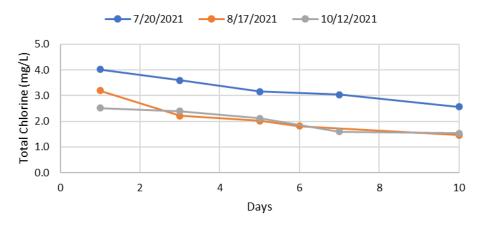


Figure 19 Pilot Monochloramine Decay Curve

Pilot HAA Formation with Monohloramine

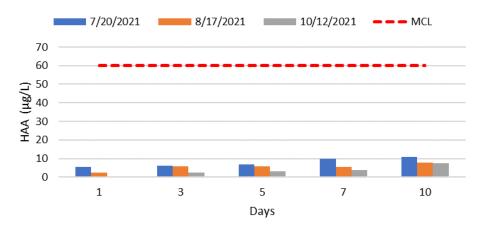


Figure 20 Pilot HAA Formation with Monochloramine

Pilot THM Formation with Monochloramine

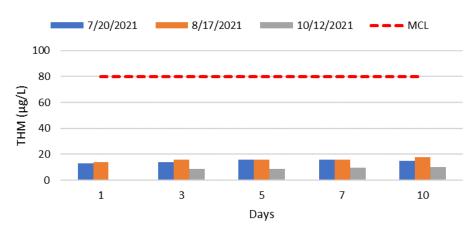


Figure 21 Pilot THM Formation with Monochloramine

1.3.3 Full-scale Free Chlorine

Full-scale Free Chlorine Residual Decay Curve

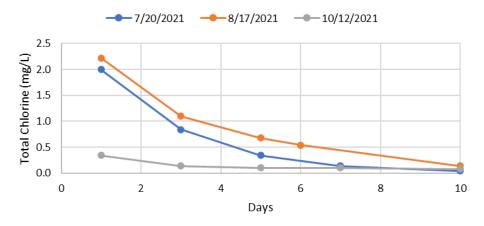


Figure 22 Full-scale Free Chlorine Decay Curve

Full-scale HAA Formation with Free Chlorine

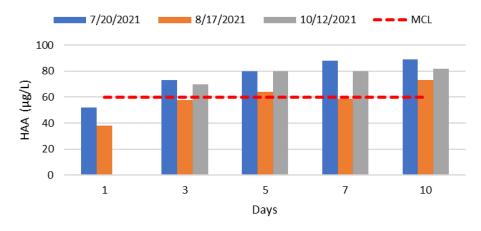
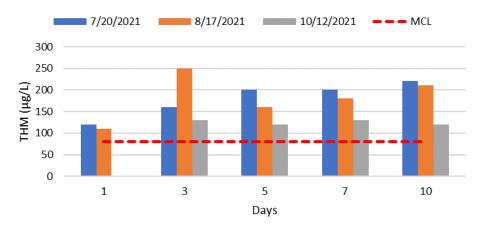



Figure 23 Full-scale HAA Formation with Free Chlorine

Full-scale THM Formation with Free Chlorine

1.3.4 Full-scale Chloramine

Full-scale Chloramine Residual Decay Curve

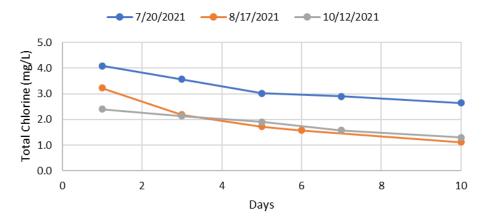


Figure 25 Full-scale Monochloramine Decay Curve

Full-scale HAA Formation with Monohloramine

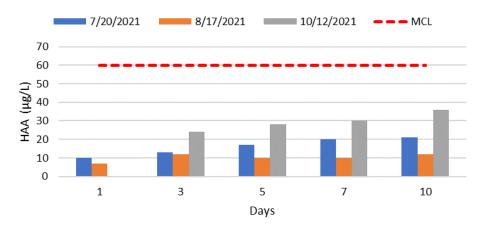
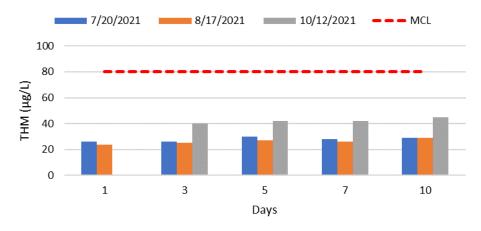



Figure 26 Full-scale HAA Formation with Free Monochloramine

Full-scale THM Formation with Monochloramine

1.4 Organics Speciation via LC-OCD

LC-OCD analysis was performed on 4 batches of samples from the SIX pilot. These samples were collected on December 28, 2020, April 12, July 14, and October 7, 2021. The RW TOC for these samples is summarized in Table 1. Methodology for the LC-OCD analysis is provided in Appendix B. A summary of the results of this testing can be found in Figure 28 through Figure 35.

Table 1 RW TOC from LC-OCD Sampling Events

	RW TOC (mg/L)
12/28/2020	13.1
4/12/2021	6.7
7/14/2021	27.3
10/7/2021	18.4

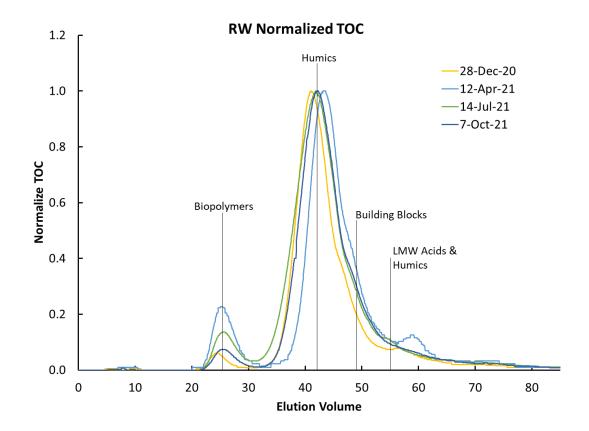


Figure 28 RW LC-OCD Results - Normalized to TOC

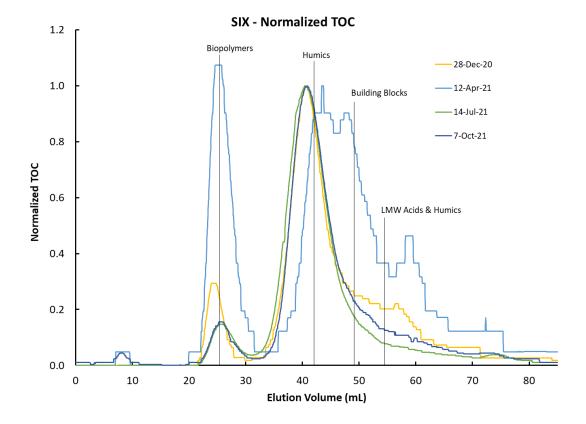


Figure 29 SIX effluent LC-OCD Results - Normalized to TOC. Note higher resolution in the April 12 sample is due to the much lower TOC during this time.

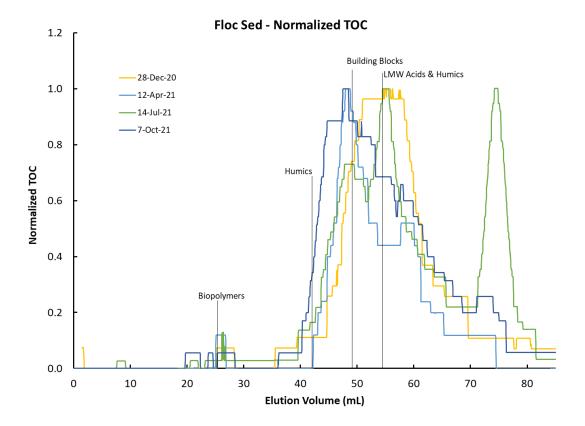


Figure 30 Pilot Floc/Sed LC-OCD Results - Normalized to TOC. Note that after IX and Coagulation, most of the humics have been removed.

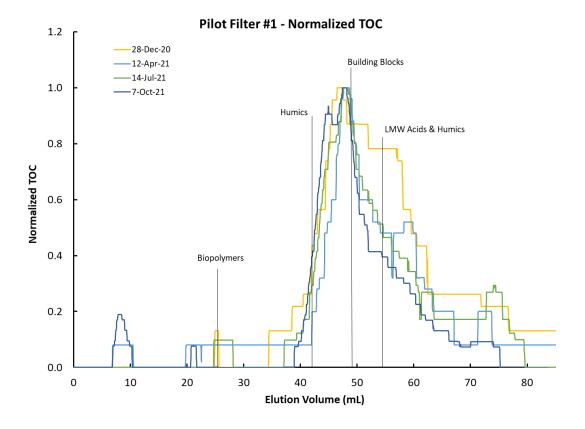


Figure 31 Pilot Filter LC-OCD Results - Normalized to TOC. Note that nearly all humics have been removed and organics remaining shift to predominantly building blocks and LMW acids.

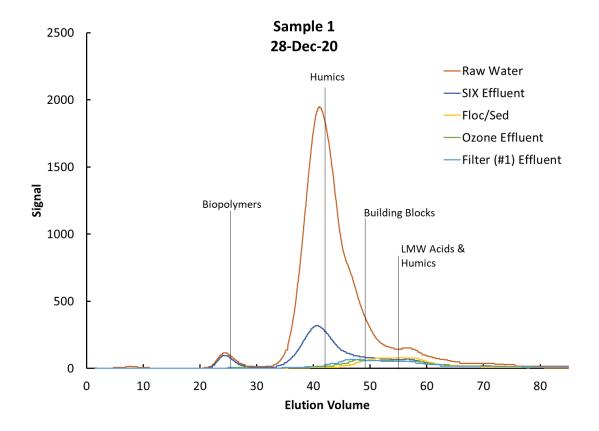


Figure 32 Sample 1 LC-OCD Results (12/28/20)

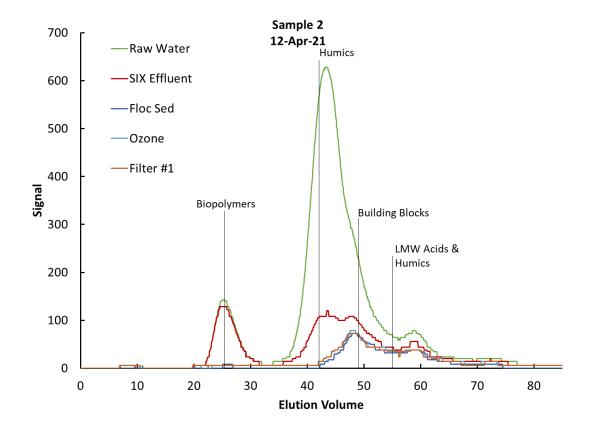


Figure 33 Sample 2 LC-OCD Results (4/12/21)

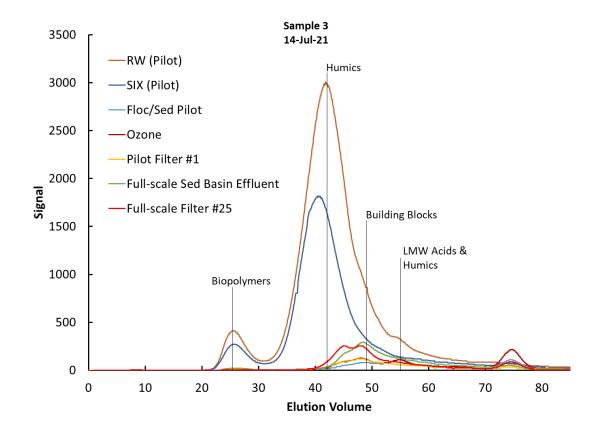


Figure 34 Sample 3 LC-OCD Results (7/14/21)

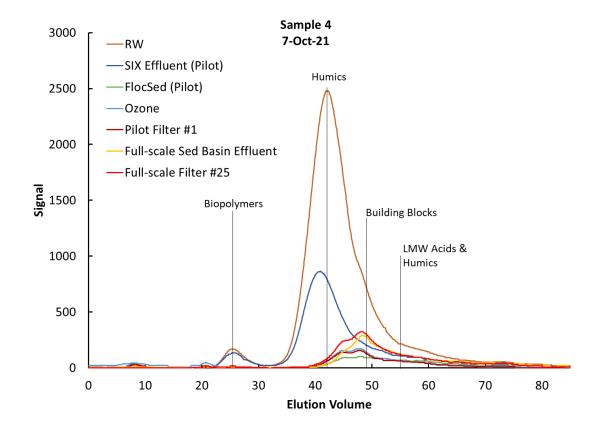
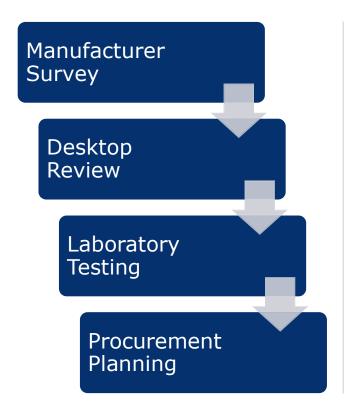


Figure 35 Sample 4 LC-OCD Results (10/7/21)

Appendix D ALTERNATIVE RESINTESTING

DLTWTP Upgrade Alternative Resin Investigation Study


For Report - February, 2022

Presentation Overview

- 1.Investigation Scope
- 2. Manufacturer Survey
- 3. Technical Comparison
- 4. Supply Considerations
- 5. Procurement Approach

Investigation Scope

One of the key benefits of the SIX process developed by PWNT is the ability to use a wide range of ion exchange resins from different manufacturers. In the long term, this can provide the City with comfort that resin can be purchased into the future at a commercially reasonable price.

To date, the trial has used a type 1 strong base anion (SBA) resin provided by Lanxess. This resin has also been used in previous SIX projects in Europe. The resin has performed well, but there are technical and commercial reasons why the City should investigate alternative resins.

From a technical perspective, suitability of ion exchange resin can be evaluated to some extent based on a desktop review of technical specifications. However, testing is also recommended to ensure it meets the application needs. This may be a multi-step process, initially with bench testing, then followed by a pilot trial for either short duration (1 month) and/or longer period (12 months).

From a commercial perspective, the challenge is to design a procurement process that enables the City to purchase the right quantity/quality of resin at a fair price. Developing a procurement plan requires input on supplier availability, lead times, price. The initial resin order is likely to be an owner direct purchase, with estimated value of \$4.5M.

Manufacturer Survey

Four resin suppliers were approached:

- Lanxess
- Du Pont
- Purolite
- Graver

The survey sought responses to a written questionnaire to be completed by suppliers, covering:

- Ability to supply a resin with same (or similar) specifications to the resin already piloted
- Recommendation for alternative resin(s) for this application
- Supply chain considerations
- Budget pricing

In addition to the written questionnaire, Ramboll conducted a short teleconference with each supplier before and after the questionnaire to enable two-way information sharing about the project.

The Piloted Resin – Lanxess S5128

Lanxess S5128 is a Type 1 strong base anion (SBA) resin.

The resin was chosen for piloting because it had been used in two previous SIX installations in Europe.

In 2021, the produce was certified against ANSI/NSF Standard 61 for use in drinking water systems.

Supplier	Lanxess	
Product Name	S5128	
Delivery Form	CI-	
Functional Group	Quat Ammonium Type I	
Matrix	Acrylic DVB	
Structure	Gel	
Uniformity Coefficient	1.8	
Effective Size	500-750 micron (D10)	
Fines (max)	0.5% max (<315)	
SG	1.09	
Shipping Weight	730 g/L ± 5%	
Total Capacity	>1.35 eq/L	
Moisture Retention	48-55%	
Stability	0-14 pH	

Similar Resins - Acrylic Gel SBA

All resin suppliers were able to supply a gelbased Type I SBA resin with similar properties to the Lanxess S5128 resin.

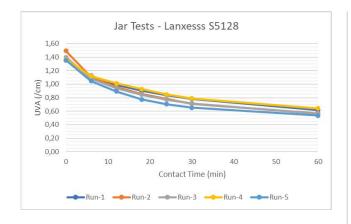
The fundamental resin chemistry will be the same between the resins. This means that the resins should will have similar specific gravity and chemical resistance.

However some properties will vary, most importantly the cross-linking density. This will affect the total capacity and moisture retention in the resin beads. Resin particle size specification varies between manufacturers. In principle, smaller beads will have a relatively higher surface area, and so improved kinetics.

Supplier	Lanxess	Du Pont	Purolite	Graver
Product Name	S5128	PWA12	A850	GX330
Delivery Form	CI-	CI-	CI-	CI-
Functional Group	Quat Ammonium Type I			
Matrix	Acrylic DVB	Acrylic DVB	Acrylic DVB	Acrylic DVB
Structure	Gel	Gel	Gel	Gel
Uniformity Coefficient	1.8	<1.9	1.7	1.6
Effective Size	500-750 micron	600-900 micron	300-1200 micron	500-750 micron
Fines (max)	0.5% (<315)	<2% (<300)	NS	0.5% (<315)
SG	1.09	NS	1.09	1.09
Shipping Weight	730 g/L ± 5%	730	680-730 g/L	730 g/L ± 5%
Total Capacity	>1.35 eq/L	≥ 1.25 eq/L	1.2 eq/L	1.2 eq/L
Moisture Retention	48-55%	57-64%	57-62%	55-65%
Stability	0-14 pH	0-14 pH	0-14 pH	0-14 pH
Certification?	ANSI/NSF61	ANSI/NSF61	ANSI/NSF61	Not yet

Alternative Resins

Resin suppliers were asked whether they could recommend an alternative resin to trial, either on the basis of improved performance and/or lower cost.

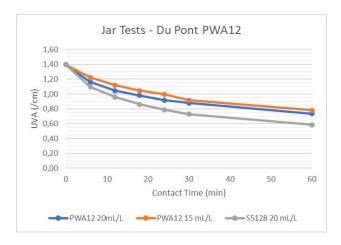

Du Pont offered a slightly larger acrylic gel resin that has been piloted successfully previously with SIX.

Macroporous resins have been widely used for organics removal applications. However macroporous resins have not been trialled long term in the SIX process and so there is some uncertainty around the long term robustness of the bead in this application.

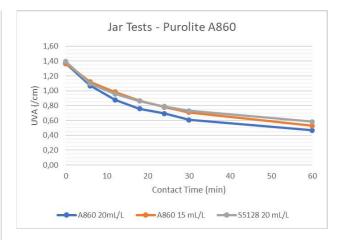
Globally, the production of acryclic resins depends on a single supplier of acrylic monomer. Purolite proposed the use of a styrene-based resin. This would potentially reduce cost, and also improve supply chain robustness.

Product	Lanxess	Du Pont	Purolite	Purolite
Product Name	S5128	PWA12 RF	A860	A502P
Delivery Form	CI-	CI-	CI-	CI-
Functional Group	Quat Ammonium Type I			
Matrix	Acrylic DVB	Acrylic DVB	Acrylic DVB	Styrene-DVB
Structure	Gel	Gel	Macroporous	Macroporous
Uniformity Coefficient	1.8	<1.8	1.7	1.7
Effective Size	500-750 micron	700-1000 micron	300-1200 micron	300-1200 micron
Fines (max)	0.5% (<315)	0.5% (<365)	NS	NS
SG	1.09	NS	1.08	1.04
Shipping Weight	730 g/L ± 5%	730	680-730 g/L	640-690 g/L
Total Capacity	>1.35 eq/L	≥ 1.25 eq/L	0.8 eq/L	0.85 eq/L
Moisture Retention	48-55%	57-64%	66-72%	66-72%
Stability	0-14 pH	0-14 pH	0-14 pH	0-14 pH
Certification?	ANSI/NSF61	Not yet	ANSI/NSF61	ANSI/NSF61

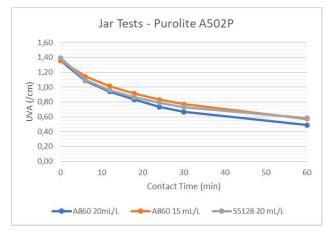
Similar Resins


Resin samples were obtained from Du Pont and Purolite for testing.

Process performance was assessed with jar test conducted at Ramboll laboratories in Syracuse. The jar test method was validated against performance at the pilot. Process performance was compared using UV-absorbance as a surrogate for TOC, consistent with the pilot. Final pH was measured to determine if there was any difference in alkalinity removal.


Raw water for the test was sourced from DL Tippin WTP in August 2021, during peak TOC season (TOC 28.7 mg/L). The graph on the left illustrates the results of 5 repetitions of the test at a dose rates of 20 mL/L, using S5128 resin. There is some variability between sample runs, due to issues such as subsampling and measurement variability.

Resins were also examined by microscope, and settling tests were measured and calculated.


Alternative Resin Testing

- Du Pont PWA12 performed worse than the S5128 for UVA removal.
- This may be due to the larger particle size (smaller surface area)

- Purolite A860 performed better than the S5128 for UVA removal
- This may be due to the macroporous structure and/or the higher water content.

- Purolite A502P performed better than the S5128 for UVA removal, and similar to A860
- This may be due to the macroporous structure and/or the higher water content.

Resin Testing Outcomes

Product	Lanxess	Du Pont	Purolite	Purolite
Product Name	S5128	PWA12 RF	A860	A502P
Difference to S5128	N/A	Larger bead size	Macroporous	Styrenic macroporous
UVA Removal (20 mL/L, 30 min)	48%	37%	56%	51%
UVA Removal (15 mL/L, 30 min)	37%	34%	48%	43%
Final pH (20 mL/L, 30 min)	6.8	6.4	6.0	6.0
Final pH (15 mL/L, 30 min)	6.6	6.5	6.1	6.3
Mechanical	Acceptable	Acceptable	Potential higher risk of attrition	Potential higher risk of attrition

The Du Pont PWA12 RF appeared to remove fewer organics than S5128, which was surprising given that resin should be similar, although with a larger bead size.

The two macroporous resins tested showed significantly better performance. However it is uncertain whether this performance would be maintained over time, or whether there would be additional resin attrition in long term operation.

Supply Considerations

Ion exchange resin pricing is influenced by systematic and specific factors such as:

- increase in transport costs (eg current shipping price surcharges)
- changes in tariffs (eg current tariffs imposed on imports from China)
- raw material costs
- incidents at production facilities.

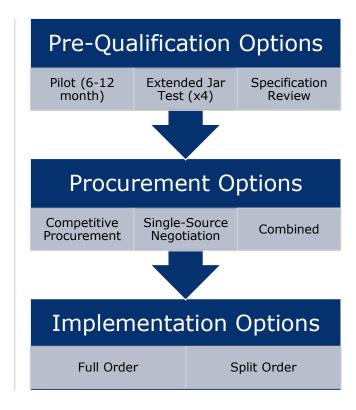
Being able to purchase resin from multiple suppliers can reduce exposure to the risk. Typical lead time for an order of this quantity would be 6-12 months.

To mitigate risks of delays in production or shipping, it is recommended to place the resin order 12-18 months prior to commencement of commissioning.

Budget resin prices ranged from \$5-\$8/L delivered Tampa.

Some suppliers indicated that further volume discounts could be obtained through a competitive tender process, with firm order quantity and timeline.

Ramboll NOV-2021 11


Procurement Options

The Lanxess S5128 resin performed acceptably through pilot. This resin is the lowest risk choice because of the experience in the Tippin pilot (12 months) and operating track record in other systems since 2012.

Gel SBA resins with similar particle size profiles are likely to perform adequately. It would be possible to run a competitive tender process with a specification, including tight requirements for particle size. Performance risk could be reduced further by conducting either additional jar tests at different seasons, and/or a pilot of alternative resins.

Choosing a different resin type would introduce significantly greater risks. It is not recommended to proceed with this approach without piloting for at least 6-12 months.

The SIX process is typically designed with separate trains. This enables different resins to be loaded into different trains. As an alternative to additional pre-qualification testing prior to tender, it may be prudent for the City to split the order, with 1 or more trains being filled with an alternative resin.

Ramboll NOV-2021 12

Report Summary

The pilot trial ran for almost 12 months using the Lanxess S5128 resin, which is a gel strong-base anion resin. This resin is the lowest risk choice because of the experience in the Tippin pilot (12 months) and operating track record in other systems since 2012.

Jar trials conducted in August 2021 demonstrated that system performance will vary depending on resin characteristics.

Gel SBA resins with similar chemistry and particle size profiles are likely to perform adequately. Performance risk could be reduced further by conducting either additional jar tests at different seasons, and/or a pilot of alternative resins. Choosing a different resin type (eg a macroporous styrenic resin) would introduce greater risks. It is not recommended to proceed with this approach without piloting for at least 6-12 months. Resin procurement strategy should be considered further during design phase.

Ramboll NOV-2021 1